Stainless Steel Housing (SUS316L) - Ideal for the Food Industry! **PAT Pending**

- Excellent resistance to detergents, disinfectants and jet water spray
- Ecolab Europe certification acquired
- E3Z-size world’s smallest square metal photoelectric sensor
- Reversed output polarity protection, external light interference algorithm, etc.
- Complete Compliance with RoHS

World’s Strongest

Withstands Detergent and Disinfectant Spray

We used SUS316L for the case and the best material for all parts to achieve 200 times the durability of the E3Z (in 1.5% solution of sodium hydroxide at 70˚C) to make the E3ZM suitable for the cleaning conditions of food-processing machinery.

World’s First

Superior Protective Structure

The first IP69K* (DIN 40050-9) protective structure in the world for a square metal photoelectric sensor. Suitable for high-temperature, high-pressure jet water spray cleaning applications.

* Refer to the footnote on page 5 (ratings and specifications table).

Industry’s Best

Shape and Markings Designed for Greater Hygiene

Few indentations in the shape means less dust and water can collect, making the E3ZM more hygienic. No labels have been used in order to prevent foreign matter contaminating food products. The E3ZM model and lot numbers are imprinted using a laser marker.
Structural Design That Provides Excellent Environment-resistance*

Unique Members of the E3ZM Family

BGS Reflective Models

E3ZM-LS6

Three models with different fixed sensitivity (rated sensing distances) have been created. These models cover the sensing ranges of the E3Z-LS61.

Through-beam Inner Aperture Models

E3ZM-T63

Fine beam without attaching an external aperture. This eliminates malfunctions from residual water drops, even immediately after washing.

A Better Fit for the Application

The E3ZM can be used in those harsh cleaning environments in which the E3Z was difficult to use. E3ZM passed the material resistance tests and is certified by Ecolab.

*Do not use the E3ZM in an oily environment.

Waterproofing ring: Fluorine rubber

Excellent resistance to detergents and disinfectants.

Optical plate: Polymethylmethacrylate (PMMA)

Excellent resistance to detergents and disinfectants. High transparency and other qualities give PMMA excellent optical characteristics.

Seal

The seal provides the durability to high-temperature and high-pressure water that complies with IP69K.

Cable: Polyvinylchloride

Excellent resistance to detergents and disinfectants.

Indicator cover: Polyethersulfone (PES)

Excellent resistance to detergents and disinfectants.

Sensitivity adjustment and mode selector switch: Polyetheretherketone (PEEK)

Excellent resistance to detergents and disinfectants. Also has excellent abrasion resistance.

Case: SUS316L

Excellent corrosion resistance to many chemical reagents.

Cleaning plan for food and beverage industry

- **Rinsing with water 40 – 50°C**
- **Rinsing with low pressure. Rinsing from top to bottom in the direction of the drains. Cleaning of the drains.**
- **Foaming from bottom to top**
 - alkaline: P3-topax 66 2 – 5 % daily
 - acid: P3-topax 56 2 % on demand
 - temperature: cold up to 40°C
 - contact time: 15 min. recommended
- **Rinsing with water 40 – 50°C**
- **Spray disinfection**
 - P3-topax 91 1-2 %, 30 -60 minutes
- **Foam disinfection**
 - P3-topactive DES 1-2 %, 10-30 minutes

*Ecolab GmbH & Co. OHG
P.O. Box 13 04 06
D-40551 Düsseldorf

Certifies that for OMRON Manufacturing of Germany GmbH
Carl-Benz-Strasse 4
71154 Nufringen
Material resistance tests were performed with cleaning substances P3-topax 56, P3-topax 66, P3-topax 91, P3 Topactive DES and demineralized water as a zero reference factor.

The material resistance of the tested series Photoelectric Sensor E3ZM to the P3 products used in the test can be considered to be positive according to the cleaning procedure mentioned overleaf.

Düsseldorf, 14th February 2006

Ecolab GmbH & Co. OHG
i. V. i. V.

Thomas Tyborski Reimund Laaff

http://www.ia.omron.com/

©Copyright OMRON Corporation 2007 All Rights Reserved.
Ordering Information

Sensors

<table>
<thead>
<tr>
<th>Sensing method</th>
<th>Appearance</th>
<th>Connection method</th>
<th>Sensing distance</th>
<th>Model</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through-beam *5</td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>15 m</td>
<td>E3ZM-T61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-T66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>0.8 m (apertures built in)</td>
<td>E3ZM-T63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-T68</td>
<td></td>
</tr>
<tr>
<td>Retro-reflective with MSR function *1</td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>4 m (100 mm) (Using E39-R1S)</td>
<td>E3ZM-R61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-R66</td>
<td></td>
</tr>
<tr>
<td>Diffuse-reflective</td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>1 m</td>
<td>E3ZM-D62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-D67</td>
<td></td>
</tr>
<tr>
<td>BGS reflective (fixed distance)</td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>10 to 100 mm</td>
<td>E3ZM-LS61H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-LS66H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>10 to 150 mm</td>
<td>E3ZM-LS62H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-LS67H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-wired (2 m) *3</td>
<td>10 to 200 mm</td>
<td>E3ZM-LS64H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect (M8, 4 pins) *4</td>
<td></td>
<td>E3ZM-LS69H</td>
<td></td>
</tr>
</tbody>
</table>

*1 The Reflector is sold separately. Select the Reflector model most suited to the application.
*2 Values in parentheses indicate the minimum required distance between the Sensor and Reflector.
*3 Pre-wired Models with a 5-m cable are also available for these products. When ordering, specify the cable length by adding "5M" to the end of the model number (e.g., E3ZM-T61 5M).
M12 Pre-wired Connector Models are also available. When ordering, add "-M1J" to the end of the model number (e.g., E3ZM-T61-M1J 0.3m).
*4 M8 Connector Models are also available with three-pin connectors. When ordering, add "-M5" to the end of the model number (e.g., E3ZM-T61-M5).
This does not apply to BGS Reflective Models, however, because they require 4 pins.
*5 Through-beam Models are also available with a light emission stop function. When ordering, add "-G0" to the end of the model number (e.g., E3ZM-T61-G0).

Accessories

Reflectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Sensing distance (typical) *</th>
<th>Model</th>
<th>Quantity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector</td>
<td>3 m (100 mm) (rated value)</td>
<td>E39-R1</td>
<td>1</td>
<td>• Reflectors are not provided with Retro-reflective models.</td>
</tr>
<tr>
<td></td>
<td>4 m (100 mm) (rated value)</td>
<td>E39-R1S</td>
<td>1</td>
<td>• The MSR function is enabled.</td>
</tr>
<tr>
<td></td>
<td>5 m (100 mm)</td>
<td>E39-R2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5 m (100 mm)</td>
<td>E39-R9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 m (100 mm)</td>
<td>E39-R10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fog Preventive Coating</td>
<td>3 m (100 mm)</td>
<td>E39-R1K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Small Reflector</td>
<td>1.5 m (50 mm)</td>
<td>E39-R5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 mm (150 mm)</td>
<td>E39-R51</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tape Reflector</td>
<td>1.1 m (150 mm)</td>
<td>E39-R52</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 m (150 mm)</td>
<td>E39-R53</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*Note: When using a Reflector without a rated value, use 0.7 times typical value as a guideline for the sensing distance.
* Values in parentheses indicate the minimum required distance between the Sensor and Reflector.

http://www.ia.omron.com/
Mounting Brackets

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Model (Material)</th>
<th>Quantity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E39-L153 (SUS304)</td>
<td>1</td>
<td>Mounting Brackets</td>
</tr>
<tr>
<td></td>
<td>E39-L98 (SUS304)</td>
<td>1</td>
<td>Metal Protective Cover Bracket *</td>
</tr>
<tr>
<td></td>
<td>E39-L104 (SUS304)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E39-L150 (SUS304)</td>
<td>1 set</td>
<td>(Sensor adjuster)</td>
</tr>
<tr>
<td></td>
<td>E39-L43 (SUS304)</td>
<td>1</td>
<td>Horizontal Mounting Bracket *</td>
</tr>
<tr>
<td></td>
<td>E39-L151 (SUS304)</td>
<td>1 set</td>
<td>Easily mounted to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>aluminum frame rails of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>conveyors and easily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>adjusted.</td>
</tr>
<tr>
<td></td>
<td>E39-L142 (SUS304)</td>
<td>1</td>
<td>Horizontal Protective Cover</td>
</tr>
<tr>
<td></td>
<td>E39-L144 (SUS304)</td>
<td>1</td>
<td>Compact Protective Cover</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bracket *</td>
</tr>
<tr>
<td></td>
<td>E39-L150 (SUS304)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Note: When using Through-beam Models, order one bracket for the Receiver and one for the Emitter.
* Cannot be used for Standard Connector models.

Sensor I/O Connectors

<table>
<thead>
<tr>
<th>Size</th>
<th>Cable</th>
<th>Appearance</th>
<th>Cable type</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8 (4 pins)</td>
<td></td>
<td>Straight</td>
<td>2 m</td>
<td>XS3F-M421-402-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>5 m</td>
<td>XS3F-M421-405-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Straight</td>
<td>2 m</td>
<td>XS3F-M422-402-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>5 m</td>
<td>XS3F-M422-405-A</td>
</tr>
<tr>
<td>M12 (For -M1J models)</td>
<td></td>
<td>Straight</td>
<td>2 m</td>
<td>XS2F-D421-DC0-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>5 m</td>
<td>XS2F-D421-GC0-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>2 m</td>
<td>XS2F-D422-DC0-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>5 m</td>
<td>XS2F-D422-GC0-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Straight</td>
<td>2 m</td>
<td>XS2F-D421-D80-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>5 m</td>
<td>XS2F-D421-G80-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>2 m</td>
<td>XS2F-D422-D80-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-shaped</td>
<td>5 m</td>
<td>XS2F-D422-G80-A</td>
</tr>
</tbody>
</table>

*1. The performance will be IP67 because of the connector specifications.
*2. Cable specifications: Outer coating material: PVC, Nut material: Stainless steel, Degree of protection: IP67 (IEC 60529)
Ratings and Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensing method</th>
<th>Through-beam</th>
<th>Retro-reflective with MSR function</th>
<th>Diffuse-reflective Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>NPN output</td>
<td>E3ZM-T61</td>
<td>E3ZM-T63</td>
<td>E3ZM-R61</td>
</tr>
<tr>
<td></td>
<td>E3ZM-T66</td>
<td>E3ZM-T68</td>
<td>E3ZM-R66</td>
<td>E3ZM-D62</td>
</tr>
<tr>
<td></td>
<td>PNP output</td>
<td>E3ZM-T81</td>
<td>E3ZM-T83</td>
<td>E3ZM-R81</td>
</tr>
<tr>
<td></td>
<td>E3ZM-T86</td>
<td>E3ZM-T88</td>
<td>E3ZM-D82</td>
<td>E3ZM-D67</td>
</tr>
</tbody>
</table>

- **Sensing distance**: 15 m, 0.8 m, 4 m [100 mm], 3 m [100 mm], 1 m (White paper 300 x 300 mm)
- **Spot diameter (typical)**
- **Standard sensing object**: Opaque: 12-mm dia. min., Opaque: 2-mm dia. min., Opaque: 75-mm dia. min.
- **Differential travel**: 20% of sensing distance max.
- **Black/white error**: --
- **Directional angle**: Emitter: 3° to 15°, Receiver: 3° to 10°, Sensor: 3° to 10°, Reflector: 30°
- **Light source (wavelength)**: Infrared LED (870 nm), Red LED (660 nm), Infrared LED (860 nm)
- **Power supply voltage**: 10 to 30 VDC, including 10% ripple (p-p)
- **Current consumption**: 40 mA max. (Emitter 20 mA max., Receiver 20 mA max.)
- **Control output**: Load power supply voltage: 30 VDC max., Load current: 100 mA max. (Residual voltage: 2 V max.)
- **Protection circuits**: Reversed power supply polarity protection, Output short-circuit protection, and Reversed output polarity protection
- **Response time**: Operate or reset: 1 ms max.
- **Sensitivity adjustment and mode selector switch**: One-turn adjuster
- **Ambient illumination (Receiver side)**: Incandescent lamp: 3,000 lx max., Sunlight: 10,000 lx max.
- **Ambient temperature range**: Operating: –25 to 55°C, Storage: –40 to 70°C (with no icing or condensation)
- **Ambient humidity range**: Operating: 35% to 85%, Storage: 35% to 95% (with no condensation)
- **Insulation resistance**: 20 MΩ min. at 500 VDC
- **Dielectric strength**: 1,000 VAC, 50/60 Hz for 1 min
- **Vibration resistance**: Destruction: 10 to 55 Hz, 1.5-mm double amplitude for 2 hours each in X, Y, and Z directions
- **Shock resistance**: Destruction: 500 m/s² 3 times each in X, Y, and Z directions
- **Degree of protection**: IEC: IP67, DIN 40050-9: IP69K
- **Connection method**: Pre-wired cable (standard length: 2 m)
- **Indicator**: Operation indicator (yellow), Stability indicator (green) (Emitter has only power supply indicator (green).)
- **Weight (packed state)**: Pre-wired models (with 2-m cable) Approx. 150 g, Approx. 90 g
- **Materials**
 - **Case**: SUS316L
 - **Lens**: PMMA (polymethylmethacrylate)
 - **Display**: PES (polylethylene)
 - **Sensitivity adjustment and mode selector switch**: PEEK (polyetheretherketone)
 - **Seals**: Fluoro rubber
- **Accessories**: Instruction sheet (Note: Reflectors and Mounting Brackets are sold separately.)

*IP69K Degree of Protection Specifications:
IP69K is a protection specification stipulated by DIN 40050 Part 9 of the German standards. The test item is sprayed with 80°C water from a nozzle of a specified shape at a water pressure of 80 to 100 bar. The amount of water is 14 to 16 liters per minute.
The distance between the test item and the nozzle is 10 to 15 cm. The water is discharged at angles of 0°, 30°, 60°, and 90° from the horizontal plane for 30 seconds at each angle while the test item is rotated horizontally.
IP69K Degree of Protection Specifications

IP69K is a protection specification stipulated by DIN 40050 Part 9 of the German standards.

The test item is sprayed with 80°C water from a nozzle of a specified shape at a water pressure of 80 to 100 bar. The amount of water is 14 to 16 liters per minute.

The distance between the test item and the nozzle is 10 to 15 cm. The water is discharged at angles of 0°, 30°, 60°, and 90° from the horizontal plane for 30 seconds at each angle while the test item is rotated horizontally.

<table>
<thead>
<tr>
<th>Model Item</th>
<th>Sensing method</th>
<th>BGS Reflective Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPN output</td>
<td>E3ZM-LS61H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3ZM-LS62H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3ZM-LS64H</td>
</tr>
<tr>
<td></td>
<td>PNP output</td>
<td>E3ZM-LS81H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3ZM-LS82H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3ZM-LS84H</td>
</tr>
<tr>
<td>Sensing distance</td>
<td>10 to 100 mm (White paper 100 × 100 mm)</td>
<td>10 to 150 mm (White paper 100 × 100 mm)</td>
</tr>
<tr>
<td>Spot diameter (typical)</td>
<td>4-mm dia. at sensing distance of 100 mm</td>
<td>12-mm dia. at sensing distance of 150 mm</td>
</tr>
<tr>
<td>Standard sensing object</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Differential travel</td>
<td>3% of sensing distance max.</td>
<td>15% of sensing distance max.</td>
</tr>
<tr>
<td>Black/white error</td>
<td>5% of sensing distance max.</td>
<td>10% of sensing distance max.</td>
</tr>
<tr>
<td>Directional angle</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Light source (wavelength)</td>
<td>Red LED (650 nm)</td>
<td>Red LED (660 nm)</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>10 to 30 VDC, including 10% ripple (p-p)</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td>25 mA max.</td>
<td></td>
</tr>
<tr>
<td>Control output</td>
<td>Load power supply voltage: 30 VDC max., Load current: 100 mA max. (Residual voltage: 2 V max.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open-collector output (NPN/PNP output depending on model)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light-ON/Dark-ON cable connection selectable</td>
<td></td>
</tr>
<tr>
<td>Protection circuits</td>
<td>Reversed power supply polarity protection, Output short-circuit protection, Reversed output polarity protection, Mutual interference protection</td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>Operate or reset: 1 ms max.</td>
<td></td>
</tr>
<tr>
<td>Sensitivity adjustment</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ambient illumination (Receiver side)</td>
<td>Incandescent lamp: 3,000 lx max., Sunlight: 10,000 lx max.</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>Operating: -25 to 55°C, Storage: -40 to 70°C (with no icing or condensation)</td>
<td></td>
</tr>
<tr>
<td>Ambient humidity range</td>
<td>Operating: 35% to 85%, Storage: 35% to 95% (with no condensation)</td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>20 MΩ min. at 500 VDC</td>
<td></td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>1,000 VAC, 50/60 Hz for 1 min</td>
<td></td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>Destruction: 10 to 55 Hz, 1.5-mm double amplitude for 2 hours each in X, Y, and Z directions</td>
<td></td>
</tr>
<tr>
<td>Shock resistance</td>
<td>Destruction: 500 m/s² 3 times each in X, Y, and Z directions</td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>*IEC: IP67, DIN 40050-9: IP69K</td>
<td></td>
</tr>
<tr>
<td>Connection method</td>
<td>Pre-wired cable (standard length: 2 m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M8 4-pin Connector</td>
<td></td>
</tr>
<tr>
<td>Indicator</td>
<td>Operation indicator (yellow), Stability indicator (green)</td>
<td></td>
</tr>
<tr>
<td>Weight (packed state)</td>
<td>Pre-wired models (with 2-m cable)</td>
<td>Approx. 90 g</td>
</tr>
<tr>
<td></td>
<td>Connector models</td>
<td>Approx. 40 g</td>
</tr>
<tr>
<td>Materials</td>
<td>Case</td>
<td>SUS316L</td>
</tr>
<tr>
<td></td>
<td>Lens</td>
<td>PMMA (polymethylmethacrylate)</td>
</tr>
<tr>
<td></td>
<td>Display</td>
<td>PES (polyethersulfone)</td>
</tr>
<tr>
<td></td>
<td>Seals</td>
<td>Fluoro rubber</td>
</tr>
<tr>
<td>Accessories</td>
<td>Instruction sheet (Note: Mounting Brackets are sold separately.)</td>
<td></td>
</tr>
</tbody>
</table>

IP69K Degree of Protection Specifications

IP69K is a protection specification stipulated by DIN 40050 Part 9 of the German standards.

The test item is sprayed with 80°C water from a nozzle of a specified shape at a water pressure of 80 to 100 bar. The amount of water is 14 to 16 liters per minute.

The distance between the test item and the nozzle is 10 to 15 cm. The water is discharged at angles of 0°, 30°, 60°, and 90° from the horizontal plane for 30 seconds at each angle while the test item is rotated horizontally.

http://www.ia.omron.com/
Parallel Operating Range

Through-beam Models

- **E3ZM-T**
 - **E3ZM-T @1(T @6) E3ZM-T @3(T @8)**

Retro-reflective Models

- **E3ZM-R**
 - **E3ZM-R @1(R @6)**

Operating Range

Diffuse-reflective Models

- **E3ZM-D**
 - **E3ZM-D @2(D @7)**

BGS Reflective Models

- **E3ZM-LS**
 - **E3ZM-LS @1H(LS @6H), Top to Bottom**
 - **E3ZM-LS @2H(LS @7H), Top to Bottom**
 - **E3ZM-LS @2H(LS @7H), Left to Right**

- **E3ZM-LS**
 - **E3ZM-LS @4H(LS @9H), Top to Bottom**
 - **E3ZM-LS @4H(LS @9H), Left to Right**

Distance X (mm)

- 0 5 10 15 20 25 30 35 40

Distance Y (mm)

- -150 -100 -50 0 50 100 150

Sensing object:

- 300 × 300 white paper
- 100 × 100 white paper

http://www.ia.omron.com/
Excess Gain vs. Distance
Through-beam Models
E3ZM-T\[1(T\[6)]

Retro-reflective Models
E3ZM-R\[1(R\[6)]

Diffuse-reflective Models
E3ZM-D\[2(D\[7)]

Sensing Object Size vs. Distance
Diffuse-reflective Models
E3ZM-D\[2(D\[7)]

Spot Diameter vs. Distance
BGS Reflective Models
E3ZM-LS\[1H(LS\[6H)]

E3ZM-LS\[2H/LS\[4H(LS\[7H/LS\[9H)]
Sensing Distance vs. Sensing Object Material
BGS Reflective Models

Inclination Characteristics (Vertical)
BGS Reflective Models

Inclination Characteristics (Horizontal)
BGS Reflective Models

http://www.ia.omron.com/
(c)Copyright OMRON Corporation 2007 All Rights Reserved.
I/O Circuit Diagrams

NPN Output

<table>
<thead>
<tr>
<th>Model</th>
<th>Operation mode</th>
<th>Timing charts</th>
<th>Operation selector</th>
<th>Output circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3ZM-T61</td>
<td>Light-ON</td>
<td>Light incident</td>
<td>L side (LIGHT ON)</td>
<td>Through-beam Receivers, Retro-reflective Models, Diffuse-reflective Models</td>
</tr>
<tr>
<td>E3ZM-T63</td>
<td>Dark-ON</td>
<td>Light incident</td>
<td>D side (DARK ON)</td>
<td>Through-beam Emitters, Through-beam, Through-beam Emitter</td>
</tr>
<tr>
<td>E3ZM-T66</td>
<td>Light-ON</td>
<td>Light interrupted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-T68</td>
<td>Dark-ON</td>
<td>Light interrupted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-R61</td>
<td>Light-ON</td>
<td>Operation indicator (yellow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-R66</td>
<td>Dark-ON</td>
<td>Operation indicator (yellow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-D62</td>
<td>Light-ON</td>
<td>Operation indicator (yellow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-D67</td>
<td>Dark-ON</td>
<td>Operation indicator (yellow)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operation Details

- **Light-ON (E3ZM-T61-G0, E3ZM-T63-G0, E3ZM-T66-G0, E3ZM-T68-G0):**
 - Connect pink lead (2) to brown lead (1).

 - Connect pink lead (2) to blue lead (3) or leave open.
PNP Output

<table>
<thead>
<tr>
<th>Model</th>
<th>Operation mode</th>
<th>Timing charts</th>
<th>Operation selector</th>
<th>Output circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3ZM-T81</td>
<td>Light-ON</td>
<td>L side (LIGHT ON)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-T83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-T86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-R81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-R86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-D82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-D87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E3ZM-T81-G0

<table>
<thead>
<tr>
<th>Model</th>
<th>Operation mode</th>
<th>Timing charts</th>
<th>Operation selector</th>
<th>Output circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3ZM-T83-G0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-T86-G0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-T88-G0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Operation mode</th>
<th>Timing charts</th>
<th>Operation selector</th>
<th>Output circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3ZM-LS81H</td>
<td>Light-ON</td>
<td>L side (LIGHT ON)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS86H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS82H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS87H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS84H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS89H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E3ZM-LS81H

<table>
<thead>
<tr>
<th>Model</th>
<th>Operation mode</th>
<th>Timing charts</th>
<th>Operation selector</th>
<th>Output circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3ZM-LS86H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS82H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS87H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS84H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3ZM-LS89H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connector Pin Arrangement

M8 Connector (-CN)/M8 Pre-wired Connector

- **M8 4-pin Connector Pin Arrangement**
- **M8 Pre-wired 3-pin Connector**

Plugs (Sensor I/O Connectors)

M8 4-pin Connectors

- XS3F-E421-402-A
- XS3F-E421-405-A
- XS3F-E422-402-A
- XS3F-E422-405-A

(c)Copyright OMRON Corporation 2007 All Rights Reserved.

http://www.ia.omron.com/
Nomenclature

Sensors with Sensitivity Adjustment and Mode Selector Switch
Through-beam Models
E3ZM-T (Receiver)

Retro-reflective Models
E3ZM-R

Diffuse-reflective Models
E3ZM-D

Infinite Adjustment Emitter
BGS Reflective Models
E3ZM-LS

Through-beam Models
E3ZM-T (Emitter)

Stability indicator (Green)
Operation selector
Sensitivity adjuster
Operation indicator (Yellow)

Stability indicator (Green) or Emitter power supply indicator (Green)
Operation indicator (Yellow)
Note: Emitter: No indicator
Safety Precautions

Refer to Warranty and Limitations of Liability.

WARNING
This product is not designed or rated for ensuring safety of persons. Do not use it for such a purpose.

CAUTION
Do not use the product with voltage in excess of the rated voltage. Excess voltage may result in malfunction or fire.

Never use the product with an AC power supply. Otherwise, explosion may result.

When cleaning the product, do not apply a concentrated spray of water to one part of the product. Otherwise, parts may become damaged and the degree of protection may be degraded.

High-temperature environments may result in burn injury.

Precautions for Safe Use
The following precautions must be observed to ensure safe operation of the Sensor.

Operating Environment
Do not use the Sensor in an environment where explosive or flammable gas is present.

Connecting Connectors
Be sure to hold the connector cover when inserting or removing the connector.
If the XS3F is used, always tighten the connector cover by hand. Do not use pliers.
If the tightening is insufficient, the degree of protection will not be maintained and the Sensor may become loose due to vibration. The appropriate tightening torque is 0.3 to 0.4 N·m.
If other commercially available connectors are used, follow the recommended connector application conditions and recommended tightening torque specifications.

Load
Do not use a load that exceeds the rated load.

Low-temperature Environments
Do not touch the metal surface with your bare hands when the temperature is low. Touching the surface may result in a cold burn.

Rotation Torque for Sensitivity Adjustment and Selector Switch
Adjust with a torque of 0.06 N·m or less.

Oily Environments
Do not use the Sensor in oily environments.

Modifications
Do not attempt to disassemble, repair, or modify the Sensor.

Outdoor Use
Do not use the Sensor in locations subject to direct sunlight.

Cleaning
Do not use thinner, alcohol, or other organic solvents. Otherwise, the optical properties and degree of protection may be degraded.

Washing
Do not use highly concentrated detergents. They may cause malfunction. Do not use high-pressure water spray in excess of the specifications.

Surface Temperature
Burn injury may occur. The Sensor surface temperature rises depending on application conditions, such as the surrounding temperature and the power supply voltage. Use caution when operating or washing the Sensor.
Precautions for Correct Use

Do not install the Sensor in the following locations.

1. Locations subject to direct sunlight
2. Locations subject to condensation due to high humidity
3. Locations subject to corrosive gas
4. Locations where the Sensor may receive direct vibration or shock

Connecting and Mounting

1. The maximum power supply voltage is 30 VDC. Before turning the power ON, make sure that the power supply voltage does not exceed the maximum voltage.
2. Laying Sensor wiring in the same conduit or duct as high-voltage wires or power lines may result in malfunction or damage due to induction. As a general rule, wire the Sensor in a separate conduit or use shielded cable.
3. Use an extension cable with a minimum thickness of 0.3 mm² and less than 100 m long.
4. Do not pull on the cable with excessive force.
5. Pounding the Photoelectric Sensor with a hammer or other tool during mounting will impair water resistance. Also, use M3 screws.
6. Mount the Sensor either using the bracket (sold separately) or on a flat surface.
7. Be sure to turn OFF the power supply before inserting or removing the connector.

Cleaning

Never use thinner or other solvents. Otherwise, the Sensor surface may be dissolved.

Power Supply

If a commercial switching regulator is used, ground the FG (frame ground) terminal.

Power Supply Reset Time

The Sensor will be able to detect objects 100 ms after the power supply is tuned ON. Start using the Sensor 100 ms or more after turning ON the power supply. If the load and the Sensor are connected to separate power supplies, be sure to turn ON the Sensor first.

Turning OFF the Power Supply

Output pulses may be generated even when the power supply is OFF. Therefore, it is recommended to first turn OFF the power supply for the load or the load line.

Load Short-circuit Protection

This Sensor is equipped with load short-circuit protection, but be sure to not short circuit the load. Be sure to not use an output current flow that exceeds the rated current. If a load short circuit occurs, the output will turn OFF, so check the wiring before turning ON the power supply again. The short-circuit protection circuit will be reset. The load short-circuit protection will operate when the current flow reaches 1.8 times the rated load current. When using a C load, use an inrush current of 1.8 times the rated load current or higher.

Water Resistance

Do not use the Sensor in water, rainfall, or outdoors.

When disposing of the Sensor, treat it as industrial waste.

Mounting Diagram

Use a mounting torque of 0.5 N·m max.

Resistance to Detergents, Disinfectants, and Chemicals

- Performance is assured for typical detergents and disinfectants, but performance may not be maintained for some detergents and disinfectants. Refer to the following table when using these agents.
- The E3ZM passed testing for resistance to detergents and disinfectants performed using the items in the following table. Refer to this table when considering use of detergents and disinfectants.

<table>
<thead>
<tr>
<th>Category</th>
<th>Product name</th>
<th>Concentration</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td>Sodium hydroxide (NaOH)</td>
<td>1.5%</td>
<td>70°C</td>
<td>240h</td>
</tr>
<tr>
<td></td>
<td>Potassium hydroxide (KOH)</td>
<td>1.5%</td>
<td>70°C</td>
<td>240h</td>
</tr>
<tr>
<td></td>
<td>Phosphoric acid (H₃PO₄)</td>
<td>2.5%</td>
<td>70°C</td>
<td>240h</td>
</tr>
<tr>
<td></td>
<td>Sodium hypochlorite (NaClO)</td>
<td>0.3%</td>
<td>25°C</td>
<td>240h</td>
</tr>
<tr>
<td></td>
<td>Hydrogen peroxide (H₂O₂)</td>
<td>6.5%</td>
<td>25°C</td>
<td>240h</td>
</tr>
<tr>
<td>Alkaline foam</td>
<td>P3-topax-66s (Manufactured by Ecolab)</td>
<td>3.0%</td>
<td>70°C</td>
<td>240h</td>
</tr>
<tr>
<td>Acidic foam detergent</td>
<td>P3-topax-56 (Manufactured by Ecolab)</td>
<td>5.0%</td>
<td>70°C</td>
<td>240h</td>
</tr>
<tr>
<td>Disinfectant</td>
<td>P3-oxonia active 90 (Manufactured by Ecolab)</td>
<td>1.0%</td>
<td>25°C</td>
<td>240h</td>
</tr>
<tr>
<td></td>
<td>TEK121 (Manufactured by ABC Com- pounding)</td>
<td>1.1%</td>
<td>25°C</td>
<td>240h</td>
</tr>
</tbody>
</table>

Note: The Sensor was immersed in the chemicals, detergents, and disinfectants listed above at the temperatures in the table for 240 hours and then passed an insulation resistance of 100 MΩ min.
Dimensions

Sensors

Through-beam Models

Pre-wired Models
E3ZM-T61(-G0)
E3ZM-T81(-G0)
E3ZM-T63(-G0)
E3ZM-T83(-G0)

Through-beam Models

Standard Connector
E3ZM-T66(-G0)
E3ZM-T86(-G0)
E3ZM-T68(-G0)
E3ZM-T88(-G0)

Emitter

Power indicator (green)

10.8
7.5
21

Two, M3

4-dia. vinyl-insulated round cable with 2 or 3 conductors (Conductor cross section: 0.2 mm² (AWG24), Insulator diameter: 1.1 mm), Standard length: 2 m

Receiver

Operation selector

10.8
7.5
21

Two, M3

Optical axis

Optical axis

Sensitivity adjuster

Operation selector

10.8
7.5
21

Two, M3

4-dia. vinyl-insulated round cable with 3 conductors (Conductor cross section: 0.2 mm² (AWG24), Insulator diameter: 1.1 mm), Standard length: 2 m

Terminal No.	Specifications
1 | +V
2 | Light emission stop input (-G0 only)
3 | 0 V
4 | —

Terminal No.	Specifications
1 | +V
2 | —
3 | 0 V
4 | Output

(c)Copyright OMRON Corporation 2007 All Rights Reserved.
Retro-reflective Models

Pre-wired Models
- E3ZM-R61
- E3ZM-R81

Diffuse-reflective Models
- Standard Connector
- E3ZM-D62
- E3ZM-D82

Diffuse-reflective Models

Standard Connector
- E3ZM-R66
- E3ZM-R86

BGS Reflective Models

Pre-wired Models
- E3ZM-LS61H
- E3ZM-LS62H
- E3ZM-LS64H
- E3ZM-LS81H
- E3ZM-LS82H
- E3ZM-LS84H

Standard Connector
- E3ZM-LS66H
- E3ZM-LS67H
- E3ZM-LS69H
- E3ZM-LS86H
- E3ZM-LS87H
- E3ZM-LS89H

Specifications Table

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+V</td>
</tr>
<tr>
<td>2</td>
<td>Operation selection</td>
</tr>
<tr>
<td>3</td>
<td>0 V</td>
</tr>
<tr>
<td>4</td>
<td>Output</td>
</tr>
</tbody>
</table>

(c)Copyright OMRON Corporation 2007 All Rights Reserved.
General Precautions For precautions on individual products, refer to the Safety Precautions in individual product information.

WARNING
These products cannot be used in safety devices for presses or other safety devices used to protect human life. These products are designed for use in applications for sensing workpieces and workers that do not affect safety.

Precautions for Safe Use
To ensure safety, always observe the following precautions.

●Wiring Considerations

<table>
<thead>
<tr>
<th>Item</th>
<th>Typical examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>Do not use a voltage that exceeds the operating voltage range. Applying a voltage that is higher than the operating voltage range, or using an AC power supply (100 VAC or higher) for a Sensor that requires a DC power supply may cause explosion or burning.</td>
</tr>
<tr>
<td>Load short-circuiting</td>
<td>Do not short-circuit the load. Explosion or burning may result. The load short-circuit protection function operates when the power supply is connected with the correct polarity and the power is within the rated voltage range.</td>
</tr>
<tr>
<td>Incorrect Wiring</td>
<td>Be sure that the power supply polarity and other wiring is correct. Incorrect wiring may cause explosion or burning.</td>
</tr>
<tr>
<td>Connection without a Load</td>
<td>If the power supply is connected directly without a load, the internal elements may explode or burn. Be sure to insert a load when connecting the power supply.</td>
</tr>
</tbody>
</table>

●Operating Environment
Do not use the Sensor in an environment where there are explosive or combustible gases.
Precautions for Correct Use

The following conditions must be considered to understand the conditions of the application and location as well as the relation to control equipment.

Model Selection

- **mT** (millitesla) is a unit for expressing magnetic flux density. One tesla is the equivalent of 10,000 gauss.

Sensing object and operating condition of Proximity Sensor

- Check the relation between the sensing object and the Proximity Sensor.

<table>
<thead>
<tr>
<th>Item</th>
<th>Points of consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing object and operating condition of Proximity Sensor</td>
<td>Check the relation between the sensing object and the Proximity Sensor.</td>
</tr>
<tr>
<td>Sensing object and operating condition of Proximity Sensor</td>
<td>Specific conditions of object: Material, size, shape, existence of plating, etc.</td>
</tr>
<tr>
<td>Sensing object and operating condition of Proximity Sensor</td>
<td>Direction of object movement: Transit interval, speed, existence of vibration, etc.</td>
</tr>
<tr>
<td>Sensing object and operating condition of Proximity Sensor</td>
<td>Peripheral metal: Material, distance to Sensor, orientation, etc.</td>
</tr>
<tr>
<td>Sensing object and operating condition of Proximity Sensor</td>
<td>Sensing distance: Fluctuation in transit point, allowable error, etc.</td>
</tr>
</tbody>
</table>

Electrical conditions

- Verify the electrical conditions of the control system to be used and the electrical performance of the Proximity Sensor.

<table>
<thead>
<tr>
<th>Power supply</th>
<th>DC (voltage fluctuation, current capacity value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC (voltage fluctuation, frequency, etc.)</td>
</tr>
<tr>
<td></td>
<td>Resistive load - Non-contact control system:</td>
</tr>
<tr>
<td></td>
<td>Inductive load - Relay, solenoid, etc.</td>
</tr>
<tr>
<td></td>
<td>Steady-state current, inrush current</td>
</tr>
<tr>
<td></td>
<td>Operating, reset voltage (current)</td>
</tr>
<tr>
<td></td>
<td>Lamp load: Steady-state current, inrush current</td>
</tr>
<tr>
<td></td>
<td>Open/close frequency</td>
</tr>
</tbody>
</table>

Environmental conditions

- The environmental tolerance of the Proximity Sensor is better than that of other types of Sensors. However, investigate carefully before using a Proximity Sensor under harsh atmospheres.

<table>
<thead>
<tr>
<th>Temperature and humidity</th>
<th>Highest or lowest “values, existence” of direct sunlight, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>Water, oil, iron powder, or other special chemicals</td>
</tr>
<tr>
<td>Vibration and shock</td>
<td>Size, duration</td>
</tr>
</tbody>
</table>

Mounting conditions

- When deciding the mounting method, take into consideration not only restrictions due to mechanical devices, but also ease of maintenance and inspection, and interference between Sensors.

<table>
<thead>
<tr>
<th>Wiring method, existence of inductance surges</th>
<th>Wires: Wire type, length, oil-resistant cable, shielded cable, robot cable, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>Conduits, ducts, pre-wired, terminal wiring, ease of maintenance and inspection</td>
</tr>
</tbody>
</table>

Influence of external electromagnetic fields

- The influence within a DC magnetic field is 20 mT\(^*\) max. Do not use the Sensor at a level higher than 20 mT.
- Sudden changes in the DC magnetic field may cause malfunction. Do not use the Sensor for applications that involve turning a DC electromagnet ON and OFF.
- Do not place a transceiver near the Sensor or its wiring. Doing so may cause malfunction.

Other considerations

- Cost feasibility: Price/delivery time
- Life: Power-ON time/frequency of use

\(^*\) mT (millitesla) is a unit for expressing magnetic flux density. One tesla is the equivalent of 10,000 gauss.
Design

Sensing Object Material
The sensing distance varies greatly depending on the material of the sensing object. Study the engineering data for the influence of sensing object material and size and select a distance with sufficient leeway.

- In general, if the sensing object is a non-magnetic metal (for example, aluminum), the sensing distance decreases.

Size of Sensing Object
In general, if the object is smaller than the standard sensing object, the sensing distance decreases.

- Design the setup for an object size that is the same or greater than the standard sensing object size from the graphs showing the sensing object size and sensing distance.
- When the size of the standard sensing object is the same or less than the size of the standard sensing object, select a sensing distance with sufficient leeway.

Thickness of Sensing Object
- The thickness of ferrous metals (iron, nickel, etc.) must be 1 mm or greater.
- When the coating thickness is 0.01 mm or less, a sensing distance equivalent to a magnetic body can be obtained. When the coating is extremely thin and is not conductive, such as a vacuum deposited film, detection is not possible.

- Influence of Plating If the sensing object is plated, the sensing distance will change (see the table below).

Effect of Plating (Typical) (Reference values: Percent of non-plated sensing distance)

<table>
<thead>
<tr>
<th>Thickness and base material of plating</th>
<th>Steel</th>
<th>Brass</th>
</tr>
</thead>
<tbody>
<tr>
<td>No plating</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Zn 5 to 15 μm</td>
<td>90 to 120</td>
<td>95 to 105</td>
</tr>
<tr>
<td>Cd 5 to 15 μm</td>
<td>100 to 110</td>
<td>95 to 105</td>
</tr>
<tr>
<td>Ag 5 to 15 μm</td>
<td>60 to 90</td>
<td>85 to 100</td>
</tr>
<tr>
<td>Cu 10 to 20 μm</td>
<td>70 to 95</td>
<td>95 to 105</td>
</tr>
<tr>
<td>Cu 5 to 15 μm</td>
<td>-</td>
<td>95 to 105</td>
</tr>
<tr>
<td>Cu (5 to 10 μm) + Ni (10 to 20 μm)</td>
<td>70 to 95</td>
<td>-</td>
</tr>
<tr>
<td>Cu (5 to 10 μm) + Ni (10 μm) + Cr (0.3 μm)</td>
<td>75 to 95</td>
<td>-</td>
</tr>
</tbody>
</table>

Mutual Interference
- Mutual interference refers to a state where a Sensor is affected by magnetism (or static capacitance) from an adjacent Sensor and the output is unstable.
- One means of avoiding interference when mounting Proximity Sensors close together is to alternate Sensors with different frequencies. The model tables indicate whether different frequencies are available. Please refer to the tables.
- When Proximity Sensors with the same frequency are mounted together in a line or face-to-face, they must be separated by a minimum distance. For details, refer to Mutual Interference in the Safety Precautions for individual Sensors.

Power Reset Time
A Sensor is ready for detection within 100 ms after turning ON the power. If the load and Sensor are connected to separate power supplies, design the system so that the Sensor power turns ON first.
Turning OFF the Power

An output pulse may be generated when the power is turned OFF, so design the system so that the load or load line power turns OFF first.

Influence of Surrounding Metal

The existence of a metal object other than the sensing object near the sensing surface of the Proximity Sensor will affect detection performance, increase the apparent operating distance, degrade temperature characteristics, and cause reset failures. For details, refer to the influence of surrounding metal table in Safety Precautions for individual Sensors.

The values in the table are for the nuts provided with the Sensors. Changing the nut material will change the influence of the surrounding metal.

Power Transformers

Be sure to use an insulated transformer for a DC power supply. Do not use an auto-transformer (single-coil transformer).

Precautions for AC 2-Wire/DC 2-Wire Sensors

Surge Protection

Although the Proximity Sensor has a surge absorption circuit, if there is a device (motor, welder, etc.) that causes large surges near the Proximity Sensor, insert a surge absorber near the source of the surges.

Influence of Leakage Current

Even when the Proximity Sensor is OFF, a small amount of current runs through the circuit as leakage current. For this reason, a small current may remain in the load (residual voltage in the load) and cause load reset failures. Verify that this voltage is lower than the load reset voltage (the leakage current is less than the load reset current) before using the Sensor.

Using an Electronic Device as the Load for an AC 2-Wire Sensor

When using an electronic device, such as a Timer, some types of devices use AC half-wave rectification. When a Proximity Sensor is connected to a device using AC half-wave rectification, only AC half-wave power will be supplied to the Sensor. This will cause the Sensor operation to be unstable. Also, do not use a Proximity Sensor to turn the power supply ON and OFF for electronic devices that use DC half-wave rectification. In such a case, use a relay to turn the power supply ON and OFF, and check the system for operating stability after connecting it.

Examples of Timers that Use AC Half-wave Rectification

Timers: H3Y, H3YN, H3RN, H3CA-8, RD2P, and H3CR (-A, -A8, -AP, -F, -G)

Countermeasures for Leakage Current (Examples)

AC 2-Wire Sensors

Connect a bleeder resistor to bypass the leakage current flowing in the load so that the current flowing through the load is less than the load reset current.

When using an AC 2-Wire Sensor, connect a bleeder resistor so that the Proximity Sensor current is at least 10 mA, and the residual load voltage when the Proximity Sensor is OFF is less than the load reset voltage.

Calculate the bleeder resistance and allowable power using the following equation.

\[
R \leq \frac{Vs}{10 - I} \quad \text{(kΩ)}
\]

\[
P > \frac{Vs^2}{R} \quad \text{(mW)}
\]

\[
P : \text{Watts of bleeder resistance (the actual number of watts used should be several times this number)}
\]

\[
I : \text{Load current (mA)}
\]

It is recommend that leeway be included in the actual values used. For 100 VAC, use 10 kΩ or less and 3 W (5 W) or higher, and for 200 VAC, use 20 kΩ or less and 10 W (20 W) or higher. If the effects of heat generation are a problem, use the number of watts in parentheses () or higher.

DC 2-Wire Sensors

Connect a bleeder resistor to bypass the leakage current flowing in the load, and design the load current so that (leakage current) \times (load input impedance) < reset voltage.

Calculate the bleeder resistance and allowable power using the following equation.

\[
R \leq \frac{Vs}{i_{OFF}} \quad \text{(kΩ)}
\]

\[
P > \frac{Vs^2}{R} \quad \text{(mW)}
\]

\[
P : \text{Watts of bleeder resistance (the actual number of watts used should be several times this number)}
\]

\[
i_{OFF} : \text{Load reset current (mA)}
\]

It is recommend that leeway be included in the actual values used. For 12 VDC, use 15 kΩ or less and 450 mW or higher, and for 24 VDC, use 30 kΩ or less and 0.1 W or higher.
Loads with Large Inrush Current

Loads, such as lamps or motors, that cause a large inrush current* will weaken or damage the switching element. In this situation, use a relay.

* E2K, TL-N, Y: 1 A or higher

●Mounting

Mounting the Sensor

When mounting a Sensor, do not tap it with a hammer or otherwise subject it to excessive shock. This will weaken water resistance and may damage the Sensor. If the Sensor is being secured with bolts, observe the allowable tightening torque. Some models require the use of toothed washers.

For details, refer to the mounting precautions in Precautions for Correct Use in individual product information.

Mounting/Removing Using DIN Track
(Example for E2CY)

<Mounting>
1. Insert the front of the Sensor into the special Mounting Bracket (included) or DIN Track.
2. Press the rear of the Sensor into the special Mounting Bracket or DIN Track.

• When mounting the side of the Sensor using the special Mounting Bracket, first secure the Amplifier Unit to the special Mounting Bracket, and then mount the special Mounting Bracket with M3 screws and flat washers with a diameter of 6 mm maximum.

<Removing>
• While pressing the Amplifier Unit in the direction of (3), lift the fiber plug in the direction of (4) for easy removal without a screwdriver.

Set Distance

The sensing distance may vary due to fluctuations in temperature and voltage. When mounting the Sensor, it is recommend that installation be based on the set distance.
Proximity Sensors Technical Guide

Wiring Considerations

AND/OR Connections for Proximity Sensors

<table>
<thead>
<tr>
<th>Model</th>
<th>Type of connection</th>
<th>Connection</th>
<th>Description</th>
</tr>
</thead>
</table>
| DC 2-Wire | AND (series connection) | ![Diagram](image) | Keep the number of connected Sensors (N) within the range of the following equation.
\[V_S - N \times V_R \geq \text{Operating load voltage} \]
\(V_S \): Power voltage
\(V_R \): Residual output voltage of Proximity Sensor
It is possible, however, that the indicators may not light correctly and error pulses (of approximately 1 ms) may be generated because the rated power supply voltage and current are not supplied to individual Proximity Sensors. Verify that this is not a problem before operation. |
| | OR (parallel connection) | ![Diagram](image) | Keep the number of connected Sensors (N) within the range of the following equation.
\[N \times i \leq \text{Load reset current} \]
\(N \): Number of Sensors that can be connected
\(i \): Leakage current of Proximity Sensor
Example: When an MY (24-VDC) Relay is used as the load, the maximum number of Sensors that can be connected is 4. |
| AC 2-wire | AND (series connection) | ![Diagram](image) | The above Proximity Sensors cannot be used in a series connection. If needed, connect through relays. |
| | OR (parallel connection) | ![Diagram](image) | For the above Proximity Sensors, the voltage \(V_L \) that can be applied to the load when ON is \(V_L = V_S - (\text{Output residual voltage} \times \text{Number of Sensors}) \) for both 100 VAC and 200 VAC. The load will not operate unless \(V_L \) is higher than the load operating voltage. This must be verified before use. When using two or more Sensors in series with an AND circuit, the limit is three Sensors. (Be careful of the VS value in the diagram at left.) |

Note: When AND/OR connections are used with Proximity Sensors, the effects of erroneous pulses or leakage current may prevent use. Verify that there are no problems before use.
Proximity Sensors Technical Guide

Extending Cable Length
The cable of a Built-in Amplifier Sensor can be extended to a maximum length of 200 m with each of the standard cables (excluding some models). For Separate Amplifier Sensors (E2C-EDA, E2C, E2J, E2CY), refer to the specific precautions for individual products.

Bending the Cable
If you need to bend the cable, we recommend a bend radius that is at least 3 times the outer diameter of the cable (with the exception of coaxial and shielded cables).

Cable Tensile Strength
In general, do not subject the cable to a tension greater than that indicated in the following table.

<table>
<thead>
<tr>
<th>Cable diameter</th>
<th>Tensile strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 4 mm</td>
<td>30 N max.</td>
</tr>
<tr>
<td>4 mm min.</td>
<td>50 N max.</td>
</tr>
</tbody>
</table>

Note: Do not subject a shielded cable or coaxial cable to tension.

Separating High-voltage Lines
Using Metal Conduits
If a power line is to be located near the Proximity Sensor cable, use a separate metal conduit to prevent malfunction or damage. (Same for DC models.)

Example of Connection with S3D2 Sensor Controller

DC 2-Wire Sensors

Using the S3D2 Sensor Controller
Operation can be reversed with the signal input switch on the S3D2.

![Connection Diagram](image1)

Connecting to a Relay Load
Note: DC 2-Wire Sensors have a residual voltage of 3 V. Check the operating voltage of the relay before use. The residual voltage of the E2E-XD-M1J-T is 5 V.

![Relay Connection](image2)

DC 3-Wire Sensors
Operation can be reversed with the signal input switch on the S3D2.

![Connection Diagram](image3)
Operating Environment

Water Resistance
Do not use the Sensor in water, rain, or outdoors.

Ambient Conditions
Do not use the Sensor in the following environments. Doing so may cause malfunction or failure of the Sensor.
1. To maintain operational reliability and service life, use the Sensor only within the specified temperature range and do not use it outdoors.
2. The Sensor has a water resistant structure, however, attaching a cover to prevent direct contact with water will help improve reliability and prolong product life.
3. Avoid using the Sensor where there are chemical vapors, especially strong alkalis or acids (nitric acid, chromic acid, or hot concentrated sulfuric acid).

Maintenance and inspection

Periodic Inspection
To ensure long-term stable operation of the Proximity Sensor, inspect for the following on a regular basis. Conduct these inspections also for control devices.
1. Shifting, loosening, or deformation of the sensing object and Proximity Sensor mounting
2. Loosening, bad contact, or wire breakage in the wiring and connections
3. Adherence or accumulation of metal powder
4. Abnormal operating temperature or ambient conditions
5. Abnormal indicator flashing (on setting indicator types)

Disassembly and Repair
Do not under any circumstances attempt to disassemble or repair the product.

Quick Failure Check
You can conveniently check for failures by connecting the E39-VA Handy Checker to check the operation of the Sensor.
Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY
OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY
OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS, OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS Confirms THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Disclaimers

CHANGE IN SPECIFICATIONS
Product specifications and accessories may be changed at any time based on improvements and other reasons.

It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the product may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS
Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

ERRORS AND OMISSIONS
The information in this catalog has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

PERFORMANCE DATA
Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

COPYRIGHT AND COPY PERMISSION
This catalog shall not be copied for sales or promotions without permission.

This catalog is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this catalog in any manner, for any other purpose. If copying or transmitting this catalog to another, please copy or transmit it in its entirety.

2007.12

OMRON Corporation
Industrial Automation Company
http://www.ia.omron.com/
(c)Copyright OMRON Corporation 2007 All Rights Reserved.