Microchip Technology Inc.'s MCP98244 digital temperature sensor converts temperature from -40°C and +125°C to a digital word. This sensor meets JEDEC Specification JC42.4-TSE3000B1 Memory Module Thermal Sensor Component. It provides an accuracy of ±0.2°C/±1°C (typical/maximum) from +75°C to +95°C with an operating voltage of 1.7V to 3.6V. In addition, MCP98244 has an integrated EEPROM with two banks of 256 by 8 bit EEPROM (4k Bit) which can be used to store memory module details and vendor information.

The MCP98244 digital temperature sensor comes with user-programmable registers that provide flexibility for DIMM temperature-sensing applications. The registers allow user-selectable settings such as Shutdown or Low-Power modes and the specification of temperature Event boundaries. When the temperature changes beyond the specified Event boundary limits, the MCP98244 outputs an Alert signal at the Event pin. The user has the option of setting the temperature Event output signal polarity as either an active-low or active-high comparator output for thermostat operation, or as a temperature Event interrupt output for microprocessor-based systems.

The MCP98244 EEPROM is designed specifically for DRAM DIMMs (Dual In-line Memory Modules) Serial Presence Detect (SPD). It has four 128 Byte pages, which can be Software Write Protected individually. This allows DRAM vendor and product information to be stored and write-protected.

This sensor has an industry standard I²C Fast Mode Plus compatible 1 MHz serial interface.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

- **VDD**: 4.0V
- Voltage at all Input/Output pins: GND – 0.3V to 4.0V
- Pin A0: GND – 0.3V to 11V
- Storage temperature: -65°C to +150°C
- Ambient temp. with power applied: -40°C to +125°C
- Junction Temperature (TJ): +150°C
- ESD protection on all pins (HBM/MM): (4 kV:200V)
-Latch-Up Current at each pin (25°C): ±200 mA

†Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TEMPERATURE SENSOR DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, VDD = 1.7V to 3.6V, GND = Ground, and T_A = -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Sensor Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
<td>JC42.4 - TSE2004B1</td>
</tr>
<tr>
<td>+75°C < T_A ≤ +95°C</td>
<td>TACY</td>
<td>-1.0</td>
<td>±0.2</td>
<td>+1.0</td>
<td>°C</td>
<td>Grade B Accuracy Specification</td>
</tr>
<tr>
<td>+40°C < T_A ≤ +125°C</td>
<td></td>
<td>-2.0</td>
<td>±0.5</td>
<td>+2.0</td>
<td>°C</td>
<td>VDD = 1.7V to 3.6V</td>
</tr>
<tr>
<td>-40°C < T_A ≤ +125°C</td>
<td></td>
<td>-3.0</td>
<td>±1</td>
<td>+3.0</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Temperature Conversion Time

- 0.5°C/bit: t_CONV = 30 ms
- 0.25°C/bit: 65 ms to 125 ms (15 s/sec (typical) (See Section 5.2.4))
- 0.125°C/bit: 130 ms
- 0.0625°C/bit: 260 ms

Power Supply

- Specified Voltage Range: VDD = 1.7V to 3.6V
- Operating Current: I_DD_TS = 100 µA EEPROM Inactive
- Shutdown Current: I_SHDN = 0.2 µA EEPROM Inactive, I^2C Bus Inactive, T_A = 85°C
- Power On Reset (POR): V_POR = 1.4 V
- Settling Time after POR: t_POR = 1 ms For warm and cold power cycles
- Line Regulation: Δ°C = 0.2°C VDD = 1.7V to 3.6V

Event Output (Open-Drain output, external pull-up resistor required), see Section 5.2.3

- High-Level Current (leakage): I_OH = 1 µA
- Low-Level Voltage: V_OH = V_DD
- High-Level Voltage: V_OH = 0.4 V
- Thermal Response, from +25°C (Air) to +125°C (oil bath): I_RES = 0.7 mA (Active-Low, Pull-up Resistor)
- Time to 63% (89°C): Time to 63% (89°C)
MCP98244 EEPROM DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, \(V_{DD} = 1.7 \text{V to 3.6V}, \) GND = Ground, and \(T_A = -40^\circ \text{C to } +125^\circ \text{C}. \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, EEPROM write (for (t_{WC}))</td>
<td>(I_{DD_{EE}})</td>
<td>—</td>
<td>250</td>
<td>2000</td>
<td>(\mu \text{A})</td>
<td>Sensor in Shutdown Mode</td>
</tr>
<tr>
<td>Current, EEPROM read</td>
<td>(I_{DD_{EE}})</td>
<td>—</td>
<td>100</td>
<td>500</td>
<td>(\mu \text{A})</td>
<td></td>
</tr>
<tr>
<td>Write Cycle time (byte/page)</td>
<td>(t_{WC})</td>
<td>—</td>
<td>3</td>
<td>5</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Endurance (T_A = +25^\circ \text{C})</td>
<td>—</td>
<td>—</td>
<td>10k</td>
<td>—</td>
<td>cycles</td>
<td>Write Cycles, (V_{DD} = 3.3 \text{V}) (Note 1, Note 2)</td>
</tr>
<tr>
<td>EEPROM Write Temperature</td>
<td>(EE_{WRITE})</td>
<td>0</td>
<td>—</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>EEPROM Read Temperature</td>
<td>(EE_{READ})</td>
<td>—40</td>
<td>—</td>
<td>125</td>
<td>°C</td>
<td>For minimum read temperature, see Note 1</td>
</tr>
<tr>
<td>Write Protect Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP and CWP Voltage</td>
<td>(V_{HV})</td>
<td>7</td>
<td>—</td>
<td>10</td>
<td>V</td>
<td>Applied at A0 pin</td>
</tr>
</tbody>
</table>

Note 1: Characterized but not production tested.

Note 2: For endurance estimates in a specific application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site at www.microchip.com/TotalEndurance.

INPUT/OUTPUT PIN DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, \(V_{DD} = 1.7 \text{V to 3.6V}, \) GND = Ground and \(T_A = -40^\circ \text{C to } +125^\circ \text{C}. \)

Serial Input/Output (SCL, SDA, A0, A1, A2)

Input
- High-Level Voltage: \(V_{IH} \), \(0.7V_{DD} \), —, —, V
- Low-Level Voltage: \(V_{IL} \), —, —, \(0.3V_{DD} \), V
- Input Current: \(I_{IN} \), —, —, \(\pm 5 \mu \text{A} \), SDA and SCL only
- Input Impedance (A0, A1, A2): \(Z_{IN} \), —, 1, —, M\(\Omega \), \(V_{IN} > V_{IH} \)
- Input Impedance (A0, A1, A2): \(Z_{IN} \), —, 200, —, k\(\Omega \), \(V_{IN} < V_{IL} \)

Output (SDA only)
- Low-Level Voltage: \(V_{OL} \), —, —, 0.4, V, \(I_{OL} = 3 \mu \text{A} \)
- High-Level Current (leakage): \(I_{OH} \), —, —, 1, \(\mu \text{A} \), \(V_{OH} = V_{DD} \)
- Low-Level Current: \(I_{OL} \), 20, —, —, mA, \(V_{OL} = 0.4V, V_{DD} = 2.2V \)
- Capacitance: \(C_{IN} \), —, 5, —, pF

SDA and SCL Inputs
- Hysteresis: \(V_{HYST} \), —, 0.05\(V_{DD} \), —, V
- Spike Suppression: \(T_{SP} \), —, —, 50, ns

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, \(V_{DD} = 1.7 \text{V to 3.6V}, \) GND = Ground, and \(T_A = -40^\circ \text{C to } +125^\circ \text{C}. \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td>(T_A)</td>
<td>—40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td>Note 1</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_A)</td>
<td>—40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>—65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-TDFN</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>52.5</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Operation in this range must not cause \(T_J \) to exceed Maximum Junction Temperature (+150°C).
SERIAL INTERFACE TIMING SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, GND = Ground, T_A = -40°C to +125°C, and C_L = 80 pF (Note 1).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>V_DD= 1.7V to 3.6V</th>
<th>V_DD= 2.2V to 3.6V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 kHz</td>
<td>400 kHz</td>
</tr>
<tr>
<td>Sym</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>2-Wire I2C Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial port frequency (Note 2, 4)</td>
<td>t_{SCL}</td>
<td>10</td>
</tr>
<tr>
<td>Low Clock (Note 2)</td>
<td>t_{LOW}</td>
<td>4700</td>
</tr>
<tr>
<td>High Clock</td>
<td>t_{HIGH}</td>
<td>4300</td>
</tr>
<tr>
<td>Rise time (Note 5)</td>
<td>t_R</td>
<td>—</td>
</tr>
<tr>
<td>Fall time (Note 5)</td>
<td>t_F</td>
<td>20</td>
</tr>
<tr>
<td>Data in Setup time (Note 3)</td>
<td>t_{SU:DAT}</td>
<td>250</td>
</tr>
<tr>
<td>Data in Hold time (Note 6)</td>
<td>t_{HD:DI}</td>
<td>0</td>
</tr>
<tr>
<td>Data out Hold time (Note 4)</td>
<td>t_{HD:DO}</td>
<td>200</td>
</tr>
<tr>
<td>Start Condition Setup time</td>
<td>t_{SU:STA}</td>
<td>4700</td>
</tr>
<tr>
<td>Start Condition Hold time</td>
<td>t_{HD:STA}</td>
<td>4000</td>
</tr>
<tr>
<td>Stop Condition Setup time</td>
<td>t_{SU:STO}</td>
<td>4000</td>
</tr>
<tr>
<td>Bus Idle/Free</td>
<td>t_{B-FREE}</td>
<td>4700</td>
</tr>
<tr>
<td>Time out</td>
<td>t_{OUT}</td>
<td>25</td>
</tr>
<tr>
<td>Bus Capacitive load</td>
<td>C_b</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: All values referred to V_{IL MAX} and V_{IH MIN} levels.

2: If t_{LOW} > t_{OUT}, the temperature sensor I^2C interface will time out. A Repeat Start command is required for communication.

3: This device can be used in a Standard-mode I^2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must be met. This device does not stretch SCL Low period. It outputs the next data bit to the SDA line within \(t_R \text{ MAX} + t_{SU:DAT} \text{ MIN} = 1000 \text{ ns} + 250 \text{ ns} = 1250 \text{ ns} \) (according to the Standard-mode I^2C-bus specification) before the SCL line is released.

4: As a transmitter, the device provides internal minimum delay time \(t_{HD:DAT} \text{ MIN} \) to bridge the undefined region (min. 200 ns) of the falling edge of SCL \(t_F \text{ MAX} \) to avoid unintended generation of Start or Stop conditions.

5: Characterized but not production tested.

6: As a receiver, SDA should not be sampled at the falling edge of SCL. SDA can transition \(t_{HD:DI} \) 0 ns after SCL toggles Low.

TIMING DIAGRAM

[Image of timing diagram showing SCL and SDA signals with timing parameters labeled for Start Condition, Data Transmission, and Stop Condition.]
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = 1.7\text{V to 3.6V}$, GND = Ground, SDA/SCL pulled-up to V_{DD}, and $T_A = -40^\circ\text{C} \text{ to } +125^\circ\text{C}$.

FIGURE 2-1: Temperature Accuracy.

FIGURE 2-2: Temperature Accuracy Histogram, $T_A = +85^\circ\text{C}$.

FIGURE 2-3: Temperature Accuracy Histogram, $T_A = +105^\circ\text{C}$.

FIGURE 2-4: Supply Current Vs. Temperature.

FIGURE 2-5: Shutdown Current Vs. Temperature.

FIGURE 2-6: Power On Reset Threshold Voltage Vs. Temperature.
Note: Unless otherwise indicated, $V_{DD} = 1.7V$ to 3.6V, GND = Ground, SDA/SCL pulled-up to V_{DD}, and $T_A = -40^\circ C$ to $+125^\circ C$.

FIGURE 2-7: Event Output and SDA V_{OL} Vs. Temperature.

FIGURE 2-8: Temperature Conversion Rate Vs. Temperature.

FIGURE 2-9: SDA I_{OL} Vs. Temperature.

FIGURE 2-10: Line Regulation: Change in Temperature Accuracy Vs. Change in V_{DD}.

3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLES

<table>
<thead>
<tr>
<th>MCP98244 Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Slave Address and EEPROM Software Write Protect High Voltage Input (V_{HV})</td>
</tr>
<tr>
<td>A1</td>
<td>Slave Address</td>
</tr>
<tr>
<td>A2</td>
<td>Slave Address</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>SDA</td>
<td>Serial Data Line</td>
</tr>
<tr>
<td>SCL</td>
<td>Serial Clock Line</td>
</tr>
<tr>
<td>Event</td>
<td>Temperature Alert Output</td>
</tr>
<tr>
<td>VDD</td>
<td>Power Pin</td>
</tr>
<tr>
<td>EP</td>
<td>Exposed Thermal Pad (EP); can be connected to GND.</td>
</tr>
</tbody>
</table>

3.1 Address Pins (A0, A1, A2)

These pins are device address input pins.

The address pins correspond to the Least Significant bits (LSb) of address bits. The Most Significant bits (MSb) are (A6, A5, A4, A3). This is shown in Table 3-2.

TABLE 3-2: MCP98244 ADDRESS BYTE

<table>
<thead>
<tr>
<th>Device</th>
<th>Address Code</th>
<th>Slave Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>0 0 1 1</td>
<td>X</td>
</tr>
<tr>
<td>EEPROM</td>
<td>1 0 1 0</td>
<td>X</td>
</tr>
<tr>
<td>EEPROM Write Protect</td>
<td>0 1 1 0</td>
<td>_</td>
</tr>
</tbody>
</table>

Note 1: User-selectable address is shown by X, where X is 1 or 0 for V_{DD} and GND, respectively.

Note 2: The address pins are ignored for all Write Protect commands.

The A0 Address pin is a multi-function pin. This input pin is also used for high voltage input V_{HV} to enable the EEPROM Software Write Protect feature, for more information see Section 5.3.3 “Bank or page selection for EEPROM Read/write operation”.

All address pin have an internal pull-down resistors.

3.2 Ground Pin (GND)

The GND pin is the system ground pin.

3.3 Serial Data Line (SDA)

SDA is a bidirectional input/output pin, used to serially transmit data to/from the host controller. This pin requires a pull-up resistor. (See Section 4.0 “Serial Communication”).

3.4 Serial Clock Line (SCL)

The SCL is a clock input pin. All communication timing is relative to the signal on this pin. The clock is generated by the host or master controller on the bus. (See Section 4.0 “Serial Communication”).

3.5 Temperature Alert, Open-Drain Output (Event)

The MCP98244 temperature Event output pin is an open-drain output. The device outputs a signal when the ambient temperature goes beyond the user-programmed temperature limit. (see Section 5.2.3 “Event Output Configuration”).

3.6 Power Pin (V_{DD})

V_{DD} is the power pin. The operating voltage range, as specified in the DC electrical specification table, is applied on this pin.

3.7 Exposed Thermal Pad (EP)

There is an internal electrical connection between the Exposed Thermal Pad (EP) and the GND pin; they can be connected to the same potential on the Printed Circuit Board (PCB). This provides better thermal conduction from the PCB to the die.
4.0 SERIAL COMMUNICATION

4.1 2-Wire Standard Mode I²C™ Protocol-Compatible Interface

The MCP98244 serial clock input (SCL) and the bidirectional serial data line (SDA) form a 2-wire bidirectional Standard mode I²C-compatible communication port (refer to the Input/Output Pin DC Characteristics Table and Serial Interface Timing Specifications Table).

The following bus protocol has been defined:

TABLE 4-1: MCP98244 SERIAL BUS PROTOCOL DESCRIPTIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>The device that controls the serial bus, typically a microcontroller.</td>
</tr>
<tr>
<td>Slave</td>
<td>The device addressed by the master, such as the MCP98244.</td>
</tr>
<tr>
<td>Transmitter</td>
<td>Device sending data to the bus.</td>
</tr>
<tr>
<td>Receiver</td>
<td>Device receiving data from the bus.</td>
</tr>
<tr>
<td>START</td>
<td>A unique signal from master to initiate serial interface with a slave.</td>
</tr>
<tr>
<td>STOP</td>
<td>A unique signal from the master to terminate serial interface from a slave.</td>
</tr>
<tr>
<td>Read/Write</td>
<td>A read or write to the MCP98244 registers.</td>
</tr>
<tr>
<td>ACK</td>
<td>A receiver Acknowledges (ACK) the reception of each byte by polling the bus.</td>
</tr>
<tr>
<td>NAK</td>
<td>A receiver Not-Acknowledges (NAK) or releases the bus to show End-of-Data (EOD).</td>
</tr>
<tr>
<td>Busy</td>
<td>Communication is not possible because the bus is in use.</td>
</tr>
<tr>
<td>Not Busy</td>
<td>The bus is in the idle state, both SDA and SCL remain high.</td>
</tr>
<tr>
<td>Data Valid</td>
<td>SDA must remain stable before SCL becomes high in order for a data bit to be considered valid. During normal data transfers, SDA only changes state while SCL is low.</td>
</tr>
</tbody>
</table>

4.1.1 DATA TRANSFER

Data transfers are initiated by a Start condition (START), followed by a 7-bit device address and a read/write bit. An Acknowledge (ACK) from the slave confirms the reception of each byte. Each access must be terminated by a Stop condition (STOP).

Repeated communication is initiated after tB-FREE.

This device does not support sequential register read/write. Each register needs to be addressed using the Register Pointer.

4.1.2 MASTER/SLAVE

The bus is controlled by a master device (typically a microcontroller) that controls the bus access and generates the Start and Stop conditions. The MCP98244 is a slave device and does not control other devices in the bus. Both master and slave devices can operate as either transmitter or receiver. However, the master device determines which mode is activated.

4.1.3 START/STOP CONDITION

A high-to-low transition of the SDA line (while SCL is high) is the Start condition. All data transfers must be preceded by a Start condition from the master. A low-to-high transition of the SDA line (while SCL is high) signifies a Stop condition.

If a Start or Stop condition is introduced during data transmission, the MCP98244 releases the bus. All data transfers are ended by a Stop condition from the master.

4.1.4 ADDRESS BYTE

Following the Start condition, the host must transmit an 8-bit address byte to the MCP98244. The address for the MCP98244 Temperature Sensor is '0011,A2,A1,A0' in binary, where the A2, A1 and A0 bits are set externally by connecting the corresponding pins to VDD '1' or GND '0'. The 7-bit address transmitted in the serial bit stream must match the selected address for the MCP98244 to respond with an ACK. Bit 8 in the address byte is a read/write bit. Setting this bit to '1' commands a read operation, while '0' commands a write operation (see Figure 4-1).

FIGURE 4-1: Device Addressing.

4.1.5 DATA VALID

After the Start condition, each bit of data in transmission needs to be settled for a time specified by tSU-DATA before SCL toggles from low-to-high (see Serial Interface Timing Specifications table).
4.1.6 ACKNOWLEDGE (ACK/NAK)

Each receiving device, when addressed, is obliged to generate an ACK bit after the reception of each byte. The master device must generate an extra clock pulse for ACK to be recognized.

The acknowledging device pulls down the SDA line for $t_{SU\text{-}DATA}$ before the low-to-high transition of SCL from the master. SDA also needs to remain pulled down for $t_{H\text{-}DATA}$ after a high-to-low transition of SCL.

During read, the master must signal an End-of-Data (EOD) to the slave by not generating an ACK bit (NAK) once the last bit has been clocked out of the slave. In this case, the slave will leave the data line released to enable the master to generate the Stop condition.

4.1.7 TIME OUT (T_{OUT})

If the SCL stays low or high for time specified by t_{OUT}, the MCP98244 resets the serial interface. This dictates the minimum clock speed as indicated in the specification.
5.0 FUNCTIONAL DESCRIPTION

The MCP98244 temperature sensors consist of a band-gap type temperature sensor, a Delta-Sigma Analog-to-Digital Converter (ΣΔ ADC), user-programmable registers and a 2-wire I2C protocol compatible serial interface. Figure 5-1 shows a block diagram of the register structure.

FIGURE 5-1: Functional Block Diagram.
5.1 Registers

The MCP98244 device has several registers that are user-accessible. These registers include the Capability register, Configuration register, Event Temperature Upper-Boundary and Lower-Boundary Trip registers, Critical Temperature Trip register, Temperature register, Manufacturer Identification register and Device Identification register.

The Temperature register is read-only, used to access the ambient temperature data. The data is loaded in parallel to this register after tCONV. The Event Temperature Upper-Boundary and Lower-Boundary Trip registers are read/writes. If the ambient temperature drifts beyond the user-specified limits, the MCP98244 device outputs a signal using the Event pin (refer to Section 5.2.3 “Event Output Configuration”). In addition, the Critical Temperature Trip register is used to provide an additional critical temperature limit.

The Capability register is used to provide bits describing the MCP98244’s capability in measurement resolution, measurement range and device accuracy. The device Configuration register provides access to configure the MCP98244’s various features. These registers are described in further detail in the following sections.

The registers are accessed by sending a Register Pointer to the MCP98244 using the serial interface. This is an 8-bit write-only pointer, and Register 5-1 describes the pointer assignment.

REGISTER 5-1: REGISTER POINTER (WRITE ONLY)

<table>
<thead>
<tr>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
<th>W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pointer Bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

<table>
<thead>
<tr>
<th>Bit 7-4</th>
<th>Writable Bits: Write ‘0’</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 7-4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 3-0</th>
<th>Pointer Bits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Capability register</td>
</tr>
<tr>
<td>0001</td>
<td>Configuration register (CONFIG)</td>
</tr>
<tr>
<td>0010</td>
<td>Event Temperature Upper-Boundary Trip register (T_UPPER)</td>
</tr>
<tr>
<td>0011</td>
<td>Event Temperature Lower-Boundary Trip register (T_LOWER)</td>
</tr>
<tr>
<td>0100</td>
<td>Critical Temperature Trip register (T_CRIT)</td>
</tr>
<tr>
<td>0101</td>
<td>Temperature register (TA)</td>
</tr>
<tr>
<td>0110</td>
<td>Manufacturer ID register</td>
</tr>
<tr>
<td>0111</td>
<td>Device ID/Revision register</td>
</tr>
<tr>
<td>1000</td>
<td>TSE2004av Device ID and Vendor Silicon Revision Register</td>
</tr>
<tr>
<td>1001</td>
<td>Resolution register</td>
</tr>
<tr>
<td>1XXX</td>
<td>Unused (The device will not acknowledge commands to other pointer locations.).</td>
</tr>
</tbody>
</table>
Table 5-1: Bit Assignment Summary for All Temperature Sensor Registers

(See Section 5.4)

<table>
<thead>
<tr>
<th>Register Pointer (Hex)</th>
<th>MSB/LSB</th>
<th>Bit Assignment</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>SHDN Status</td>
<td>I\textsubscript{OUT} Range</td>
<td>V\textsubscript{HV}</td>
<td>Resolution</td>
<td>Range</td>
<td>Accuracy</td>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>Crt Loc</td>
<td>Win Loc</td>
<td>Int Clr</td>
<td>Evt Stat</td>
<td>Evt Cnt</td>
<td>Evt Sel</td>
<td>Evt Pol</td>
<td>Evt Mod</td>
<td></td>
</tr>
<tr>
<td>0x02</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>2\degree C</td>
<td></td>
</tr>
<tr>
<td>0x03</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>2\degree C</td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>2\degree C</td>
<td></td>
</tr>
<tr>
<td>0x05</td>
<td>MSB</td>
<td>T\textsubscript{A} \geq T\textsubscript{CRIT}</td>
<td>T\textsubscript{A} \geq T\textsubscript{UPPER}</td>
<td>T\textsubscript{A} < T\textsubscript{LOWER}</td>
<td>SIGN</td>
<td>2\degree C</td>
<td>2\degree C</td>
<td>2\degree C</td>
<td>2\degree C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>2\degree C</td>
<td></td>
</tr>
<tr>
<td>0x06</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0x07</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0x08</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0x09</td>
<td>MSB</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Resolution</td>
</tr>
</tbody>
</table>
5.1.1 CAPABILITY REGISTER

This is a read-only register used to identify the temperature sensor capability. The device capability bit assignments are specified by TSE2004av, and this device is factory configured to meet the default conditions as described in Register 5-2 (these values can not be changed).

For example, the MCP98244 device is capable of providing temperature at 0.25°C resolution, measuring temperature below and above 0°C, providing ±1°C and ±2°C accuracy over the active and monitor temperature ranges (respectively) and providing user-programmable temperature event boundary trip limits.

These functions are described in further detail in the following sections.

REGISTER 5-2: CAPABILITY REGISTER (READ-ONLY) → ADDRESS '0000 0000'b

<table>
<thead>
<tr>
<th>bit 15-7</th>
<th>R-1</th>
<th>R-1</th>
<th>R-1</th>
<th>R-0</th>
<th>R-1</th>
<th>R-1</th>
<th>R-1</th>
<th>R-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>HDN Status</td>
<td>t_OUT Range</td>
<td>V_HV</td>
<td>Resolution</td>
<td>Meas. Range</td>
<td>Accuracy</td>
<td>Temp Alarm</td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td>bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’

bit 7 Event output status during Shutdown (SHDN Status):

0 = Event output remains in previous state. If the output asserts before shutdown command, it remains asserted during shutdown.
1 = Event output deasserts during shutdown. After shutdown, it takes t_CONV to re-assert the Event output (power-up default)

bit 6 I^2C Bus time-out (t_OUT Range):

0 = Bus time-out range is 10 ms to 60 ms
1 = Bus time-out range is 25 ms to 35 ms (power-up default)

bit 5 High Voltage Input

0 = Pin A0 does not accept High Voltage
1 = Pin A0 accepts High Voltage for the EEPROM Write Protect feature (power-up default)

bit 4-3 Resolution:

00 = 0.5°C
01 = 0.25°C (power up default)
10 = 0.125°C
11 = 0.0625°C

These bits reflect the selected resolution (see Section 5.2.4 “Temperature Resolution”)

bit 2 Temperature Measurement Range (Meas. Range):

0 = T_A = 0 (decimal) for temperature below 0°C
1 = The part can measure temperature below 0°C (power-up default)
REGISTER 5-2: CAPABILITY REGISTER (READ-ONLY) → ADDRESS ‘0000 0000’b (CONTINUED)

<table>
<thead>
<tr>
<th>bit 1</th>
<th>Accuracy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Accuracy → ±2°C from +75°C to +95°C (Active Range) and ±3°C from +40°C to +125°C (Monitor Range)</td>
</tr>
<tr>
<td>1</td>
<td>Accuracy → ±1°C from +75°C to +95°C (Active Range) and ±2°C from +40°C to +125°C (Monitor Range)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 0</th>
<th>Temperature Alarm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No defined function (This bit will never be cleared or set to ‘0.’)</td>
</tr>
<tr>
<td>1</td>
<td>The part has temperature boundary trip limits (T_UPPER/T_LOWER/T_CRIT registers) and a temperature event output (JC 42.4 required feature)</td>
</tr>
</tbody>
</table>

FIGURE 5-2: Timing Diagram for Reading the Capability Register (See Section 4.0 “Serial Communication”).

![Timing Diagram](image-url)
5.1.2 SENSOR CONFIGURATION REGISTER (CONFIG)

The MCP98244 device has a 16-bit Configuration register (CONFIG) that allows the user to set various functions for a robust temperature monitoring system. Bits 10 thru 0 are used to select Event output boundary hysteresis, device Shutdown or Low-Power mode, temperature boundary and critical temperature lock, or temperature Event output enable/disable. In addition, the user can select the Event output condition (output set for \(T_{UPPER}\) and \(T_{LOWER}\) temperature boundary or \(T_{CRIT}\) only), read Event output status and set Event output polarity and mode (Comparator Output or Interrupt Output mode).

The temperature hysteresis bits 10 and 9 can be used to prevent output chatter when the ambient temperature gradually changes beyond the user-specified temperature boundary (see Section 5.2.2 “Temperature Hysteresis (\(T_{HYST}\))”). The Continuous Conversion or Shutdown mode is selected using bit 8. In Shutdown mode, the band gap temperature sensor circuit stops converting temperature and the Ambient Temperature register \(T_A\) holds the previous successfully converted temperature data (see Section 5.2.1 “Shutdown Mode”). Bits 7 and 6 are used to lock the user-specified boundaries \(T_{UPPER}\), \(T_{LOWER}\) and \(T_{CRIT}\) to prevent an accidental rewrite. Bits 5 thru 0 are used to configure the temperature Event output pin. All functions are described in Register 5-3 (see Section 5.2.3 “Event Output Configuration”).

REGISTER 5-3: CONFIGURATION REGISTER (CONFIG) → ADDRESS ‘0000 0001’b

<table>
<thead>
<tr>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T_{HYST})</td>
<td>(SHDN)</td>
</tr>
</tbody>
</table>

- **bit 15 to bit 0**

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
</table>

- **bit 7 to bit 0**

<table>
<thead>
<tr>
<th>Legend:</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = Readable bit</td>
</tr>
<tr>
<td>W = Writable bit</td>
</tr>
<tr>
<td>U = Unimplemented bit, read as ‘0’</td>
</tr>
<tr>
<td>-n = Value at POR</td>
</tr>
<tr>
<td>‘1’ = Bit is set</td>
</tr>
<tr>
<td>‘0’ = Bit is cleared</td>
</tr>
<tr>
<td>x = Bit is unknown</td>
</tr>
</tbody>
</table>

- **bit 15-11** **Unimplemented:** Read as ‘0’
- **bit 10-9**
 - \(T_{UPPER}\) and \(T_{LOWER}\) Limit Hysteresis (\(T_{HYST}\)):
 - 00 = 0°C (power-up default)
 - 01 = 1.5°C
 - 10 = 3.0°C
 - 11 = 6.0°C

 (Refer to Section 5.2.3 “Event Output Configuration”)

 This bit can not be altered when either of the lock bits are set (bit 6 and bit 7).
 This bit can be programmed in Shutdown mode.

- **bit 8**
 - **Shutdown Mode (\(SHDN\)):**
 - 0 = Continuous Conversion (power-up default)
 - 1 = Shutdown (Low-Power mode)

 In shutdown, all power-consuming activities are disabled, though all registers can be written to or read. Event output will deassert.
 This bit cannot be set ‘1’ when either of the lock bits is set (bit 6 and bit 7). However, it can be cleared ‘0’ for Continuous Conversion while locked (Refer to Section 5.2.1 “Shutdown Mode”).
REGISTER 5-3: CONFIGURATION REGISTER (CONFIG) → ADDRESS ‘0000 0001’b (CONTINUED)

bit 7
\(\text{TcRIT Lock Bit (Crit. Lock):} \)

0 = Unlocked. \(\text{TcRIT} \) register can be written (power-up default)
1 = Locked. \(\text{TcRIT} \) register can not be written

When enabled, this bit remains set ‘1’ or locked until cleared by internal reset (Section 5.4 “Summary of Power-On Default”). This bit does not require a double-write.

This bit can be programmed in Shutdown mode.

bit 6
\(\text{TUPPER and TLOWER Window Lock Bit (Win. Lock):} \)

0 = Unlocked. \(\text{TUPPER} \) and \(\text{TLOWER} \) registers can be written (power-up default)
1 = Locked. \(\text{TUPPER} \) and \(\text{TLOWER} \) registers can not be written

When enabled, this bit remains set ‘1’ or locked until cleared by power-on Respell (Section 5.4 “Summary of Power-On Default”). This bit does not require a double-write.

This bit can be programmed in Shutdown mode.

bit 5
\(\text{Interrupt Clear (Int. Clear) Bit:} \)

0 = No effect (power-up default)
1 = Clear interrupt output. When read this bit returns ‘0’

This bit clears the Interrupt flag which deasserts Event output. In shutdown mode, the Event output is always deasserted. Therefore, setting this bit in Shutdown mode clears the interrupt after the device returns to normal operation.

bit 4
\(\text{Event Output Status (Event Stat.) Bit:} \)

0 = Event output is not asserted by the device (power-up default)
1 = Event output is asserted as a comparator/Interrupt or critical temperature output

In shutdown mode this bit will clear because Event output is always deasserted in Shutdown mode.

bit 3
\(\text{Event Output Control (Event Cnt.) Bit:} \)

0 = Event output Disabled (power-up default)
1 = Event output Enabled

This bit can not be altered when either of the lock bits is set (bit 6 and bit 7).

This bit can be programmed in Shutdown mode, but Event output will remain deasserted.

bit 2
\(\text{Event Output Select (Event Sel.) Bit:} \)

0 = Event output for \(\text{TUPPER, TLOWER} \) and \(\text{TcRIT} \) (power-up default)
1 = \(\text{T}_A \geq \text{TcRIT} \) only. (\(\text{TUPPER} \) and \(\text{TLOWER} \) temperature boundaries are disabled.)

When the Alarm Window Lock bit is set, this bit cannot be altered until unlocked (bit 6).

This bit can be programmed in Shutdown mode, but Event output will remain deasserted.

bit 1
\(\text{Event Output Polarity (Event Pol.) Bit:} \)

0 = Active low (power-up default. Pull-up resistor required)
1 = Active-high

This bit cannot be altered when either of the lock bits is set (bit 6 and bit 7).

This bit can be programmed in Shutdown mode, but Event output will remain deasserted, see Section 5.2.3 “Event Output Configuration”

bit 0
\(\text{Event Output Mode (Event Mod.) Bit:} \)

0 = Comparator output (power-up default)
1 = Interrupt output

This bit cannot be altered when either of the lock bits is set (bit 6 and bit 7).

This bit can be programmed in Shutdown mode, but Event output will remain deasserted.
• Writing to the CONFIG Register to Enable the Event Output pin <0000 0000 0000 1000>b.

Note: this is an example routine:

```c
i2c_start(); // send START command
i2c_write(AddressByte & 0xFE); //WRITE Command
    //also, make sure bit 0 is cleared ‘0’
i2c_write(0x01); // Write CONFIG Register
i2c_write(0x00); // Write data
i2c_write(0x08); // Write data
i2c_stop(); // send STOP command
```

FIGURE 5-3: Timing Diagram for Writing to the Configuration Register (See Section 4.0 “Serial Communication”).
• Reading the CONFIG Register.

Note: It is not necessary to select the register pointer if it was set from the previous read/write.

Note: this is an example routine:

```c
i2c_start(); // send START command
i2c_write(AddressByte & 0xFE); //WRITE Command
// also, make sure bit 0 is cleared ‘0’
i2c_write(0x01); // Write CONFIG Register
i2c_start(); // send Repeat START command
i2c_write(AddressByte | 0x01); //READ Command
// also, make sure bit 0 is set ‘1’
UpperByte = i2c_read(ACK); // READ 8 bits
// and Send ACK bit
LowerByte = i2c_read(NAK); // READ 8 bits
// and Send NAK bit
i2c_stop(); // send STOP command
```

FIGURE 5-4: Timing Diagram for Reading from the Configuration Register (See Section 4.0 “Serial Communication”).
5.1.3 UPPER/LOWER/CRITICAL TEMPERATURE LIMIT REGISTERS (T\textsubscript{UPPER}/T\textsubscript{LOWER}/T\textsubscript{CRIT})

The MCP98244 device has a 16-bit read/write Event output Temperature Upper-Boundary Trip register (T\textsubscript{UPPER}), a 16-bit Lower-Boundary Trip register (T\textsubscript{LOWER}) and a 16-bit Critical Boundary Trip register (T\textsubscript{CRIT}) that contains 11-bit data in two’s complement format (0.25°C). This data represents the maximum and minimum temperature boundary or temperature window that can be used to monitor ambient temperature. If this feature is enabled (Section 5.1.2 “Sensor Configuration Register (CONFIG)”) and the ambient temperature exceeds the specified boundary or window, the MCP98244 asserts an Event output. (Refer to Section 5.2.3 “Event Output Configuration”).

REGISTER 5-4: UPPER/LOWER/CRITICAL TEMPERATURE LIMIT REGISTER (T\textsubscript{UPPER}/T\textsubscript{LOWER}/T\textsubscript{CRIT})

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>0000 0010'b</th>
<th>0000 0011'b</th>
<th>0000 0100'b</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>U-0</td>
</tr>
<tr>
<td>R/W-0</td>
<td>U-0</td>
<td>U-0</td>
<td>bit 15</td>
</tr>
</tbody>
</table>

- **bit 15 - Sign:**
 - 0 = \(T_A \geq 0°C \)
 - 1 = \(T_A < 0°C \)

- **bit 11-2 T\textsubscript{UPPER}/T\textsubscript{LOWER}/T\textsubscript{CRIT}:**
 - Temperature boundary trip data in two’s complement format.

- **bit 1-0 Unimplemented:**
 - Read as ‘0’

Note 1: This table shows two 16-bit registers for T\textsubscript{UPPER}, T\textsubscript{LOWER} and T\textsubscript{CRIT} located at ‘0000 0010b’, ‘0000 0011b’ and ‘0000 0100b’, respectively.

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- \('n' \) = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown
FIGURE 5-5: Timing Diagram for Writing and Reading from the T_{UPPER} Register (See Section 4.0 “Serial Communication”).

- Writing 90°C to the T_{UPPER} Register <0000 0101 1010 0000>b.
- Reading from the T_{UPPER} Register.

Note: It is not necessary to select the register pointer if it was set from the previous read/write.
5.1.4 AMBIENT TEMPERATURE REGISTER (TA)

The MCP98244 device uses a bandgap temperature sensor circuit to output analog voltage proportional to absolute temperature. An internal ∆Σ ADC is used to convert the analog voltage to a digital word. The converter resolution is set to 0.25°C + sign (11-bit data). The digital word is loaded to a 16-bit read-only Ambient Temperature register (TA) that contains 11-bit temperature data in two’s complement format.

The TA register bits (bits 12 through 0) are double-buffered. Therefore, the user can access the register while, in the background, the MCP98244 performs an analog-to-digital conversion. The temperature data from the ∆Σ ADC is loaded in parallel to the TA register at t\textsubscript{CONV} refresh rate.

In addition, the TA register uses three bits (bits 15, 14 and 13) to reflect the Event pin state. This allows the user to identify the cause of the Event output trigger (see Section 5.2.3 “Event Output Configuration”): bit 15 is set to ‘1’ if TA is greater than or equal to T\textsubscript{CRIT}; bit 14 is set to ‘1’ if TA is greater than T\textsubscript{UPPER} and bit 13 is set to ‘1’ if TA is less than T\textsubscript{LOWER}.

The TA register bit assignment and boundary conditions are described in Register 5-5.

<table>
<thead>
<tr>
<th>REGISTER 5-5: AMBIENT TEMPERATURE REGISTER (TA) → ADDRESS `'0000 0101'b (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-0</td>
</tr>
<tr>
<td>TA vs. T\textsubscript{CRIT}</td>
</tr>
<tr>
<td>bit 15</td>
</tr>
<tr>
<td>23 °C</td>
</tr>
<tr>
<td>bit 7</td>
</tr>
<tr>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:

- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
 - ‘1’ = Bit is set
 - ‘0’ = Bit is cleared
 - x = Bit is unknown

- bit 15 T\textsubscript{A} vs. T\textsubscript{CRIT} Bit: (Note 1)
 - 0 = TA < T\textsubscript{CRIT}
 - 1 = TA ≥ T\textsubscript{CRIT}

- bit 14 T\textsubscript{A} vs. T\textsubscript{UPPER} Bit (Note 1):
 - 0 = TA ≤ T\textsubscript{UPPER}
 - 1 = TA > T\textsubscript{UPPER}

- bit 13 T\textsubscript{A} vs. T\textsubscript{LOWER} Bit (Note 1):
 - 0 = TA ≥ T\textsubscript{LOWER}
 - 1 = TA < T\textsubscript{LOWER}

- bit 12 SIGN Bit:
 - 0 = TA ≥ 0°C
 - 1 = TA < 0°C

- bit 11-0 Ambient Temperature (TA) Bits: (Note 2)
 - 12-bit Ambient Temperature data in two’s complement format.

Note 1: Bits 15, 14 and 13 are not affected by the status of the Event output configuration (bits 5 to 0 of CONFIG) (Register 5-3).

2: Bits 2, 1, and 0 may remain clear ‘0’ depending on the status of the resolution register. The Power-up default is 0.25°C/bit, bits 1 and 0 remain clear ‘0’.

© 2012-2013 Microchip Technology Inc.
5.1.4.1 \(T_A \) bits to Temperature Conversion

To convert the \(T_A \) bits to decimal temperature, the upper three boundary bits (15, 14 and 13) must be masked out. Then determine the sign bit (bit 12) to check positive or negative temperature, shift the bits accordingly and combine the upper and lower bytes of the 16-bit register. The upper byte contains data for temperatures greater than 32°C, while the lower byte contains data for temperature less than 32°C, including fractional data. When combining the upper and lower bytes, the upper byte must be Right-shifted by 4 bits (or multiply by \(2^4 \)) and the lower byte must be Left-shifted by 4 bits (or multiply by \(2^{-4} \)). Adding the results of the shifted values provides the temperature data in decimal format; see Equation 5-1.

The temperature bits are in two’s complement format, therefore, positive temperature data and negative temperature data are computed differently. Equation 5-1 shows the temperature computation. The example instruction code outlined in Figure 5-6 shows the communication flow, also see Figure 5-7 for timing diagram.

EQUATION 5-1: BYTES TO TEMPERATURE CONVERSION

Temperature ≥ 0°C (bit 12 or Sign bit = 0)
\[
T_A = (UpperByte \times 2^4 + LowerByte \times 2^{-4})
\]

Temperature < 0°C (bit 12 or Sign bit = 1)
\[
T_A = (UpperByte \times 2^4 + LowerByte \times 2^{-4}) - 256
\]

Where:
- \(T_A \) = Ambient Temperature (°C)
- \(UpperByte = T_A \) bit 11 to bit 8
- \(LowerByte = T_A \) bit 7 to bit 0

Example Instruction Code

```
i2c_start(); // send START command
i2c_write(AddressByte & 0xFE); //WRITE Command
  //also, make sure bit 0 is cleared '0'
i2c_write(0x05); // Write \( T_A \) Register Address
i2c_start(); // Repeat START
i2c_write(AddressByte | 0x01); // READ Command
  //also, make sure bit 0 is Set '1'
UpperByte = i2c_read(ACK); // READ 8 bits
  //and Send ACK bit
LowerByte = i2c_read(NAK); // READ 8 bits
  //and Send NAK bit
i2c_stop(); // send STOP command

// Convert the temperature data
// First Check flag bits
if ((UpperByte & 0x80) == 0x80){ //\( T_A \) ≥ \( T_{CRIT} \)}
  }
if ((UpperByte & 0x40) == 0x40){ //\( T_A \) > \( T_{UPPER} \)}
  }
if ((UpperByte & 0x20) == 0x20){ //\( T_A \) < \( T_{LOWER} \)}
  }
UpperByte = UpperByte & 0x1F; // Clear flag bits
if ((UpperByte & 0x10) == 0x10){ //\( T_A \) < 0°C
  UpperByte = UpperByte & 0x0F; // Clear SIGN
  Temperature = 256 - (UpperByte x 16 + LowerByte / 16); //\( T_A \) ≥ 0°C
  Temperature = (UpperByte x 16 + LowerByte / 16); // Temperature = Ambient Temperature (°C)
```

FIGURE 5-6: Example Instruction Code.
Note: It is not necessary to select the register pointer if it was set from the previous read/write.
5.1.5 MANUFACTURER ID REGISTER

This register is used to identify the manufacturer of the device in order to perform manufacturer specific operation. The Manufacturer ID for the MCP98244 is 0x0054 (hexadecimal).

REGISTER 5-6: MANUFACTURER ID REGISTER (READ-ONLY) \(\rightarrow \) ADDRESS ‘0000 0110’b

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td>bit 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
<th>R-1</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td>bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- \(-n\) = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- \(x\) = Bit is unknown

bit 15-0 Device Manufacturer Identification Number

\[
\text{Address Byte} \quad \text{Manuf. ID Pointer} \quad \text{MCP98244} \quad \text{MCP98244} \quad \text{Note: It is not necessary to select the register pointer if it was set from the previous read/write.}
\]

\[
\text{Address Byte} \quad \text{MSB Data} \quad \text{Master} \quad \text{MCP98244} \quad \text{Master} \quad \text{LSB Data}
\]

FIGURE 5-8: Timing Diagram for Reading the Manufacturer ID Register (See Section 4.0 “Serial Communication”).
5.1.6 DEVICE ID AND REVISION REGISTER

There are two Device ID and Revision ID registers. Address pointer 0x07 is specific to TSE2004av devices and it is used to identify compliant devices. Address Pointer 0x08 is a Microchip-specific register and it is used to identify Microchip devices. The upper byte of these registers is used to specify the device identification and the lower byte is used to specify device silicon revision. The device ID for the MCP98244 is 0x22 (hex) (same as TSE2004av).

REGISTER 5-7: TSE2004AV DEVICE ID AND DEVICE REVISION (READ-ONLY) →
ADDRESS ‘0000 0111’b AND ‘0000 1000’b

<table>
<thead>
<tr>
<th>Address</th>
<th>Device ID</th>
<th>Device Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-0 R-0 R-1 R-0 R-0 R-0 R-1 R-0</td>
<td>bit 15</td>
<td>bit 8</td>
</tr>
<tr>
<td>R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0</td>
<td>bit 7</td>
<td>bit 0</td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 15-8 **Device ID**: Bit 15 to bit 8 are used for device ID
bit 7-0 **Device Revision**: Bit 7 to bit 0 are used for device revision

The revision (Lower Byte) begins with 0x00 (hex) for the first release, with the number being incremented as revised versions are released.
5.1.7 RESOLUTION REGISTER

This register allows the user to change the sensor resolution (see Section 5.2.4 “Temperature Resolution”). The POR default resolution is 0.25°C. The selected resolution is also reflected in the Capability register (see Register 5-2).

Note: In order to prevent accidentally writing the resolution register to higher resolution and exceeding the maximum temperature conversion time of $t_{CONV} = 125$ ms, a Shutdown Command (using the CONFIG register) is required to change the resolution register. The device must be in shutdown mode to change the resolution.

REGISTER 5-8: RESOLUTION REGISTER → '0000 1001' b

<table>
<thead>
<tr>
<th>R/W-1</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 14-2</td>
<td>U-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 1-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R/W-0</td>
<td>R/W-1</td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

- bit 15: **Unimplemented:** Read as ‘1’
- bit 14-2: **Unimplemented:** Read as ‘0’
- bit 1-0: **Resolution:**
 - 00 = LSB = 0.5°C ($t_{CONV} = 23$ ms typical)
 - 01 = LSB = 0.25°C (power up default, $t_{CONV} = 46$ ms typical)
 - 10 = LSB = 0.125°C ($t_{CONV} = 75$ ms typical)
 - 11 = LSB = 0.0625°C ($t_{CONV} = 150$ ms typical)
5.2 SENSOR FEATURE DESCRIPTION

5.2.1 SHUTDOWN MODE

Shutdown mode disables all power-consuming activities (including temperature sampling operations) while leaving the serial interface active. This mode is selected by setting bit 8 of CONFIG to ‘1’. In this mode, the device consumes I_{SHDN}. It remains in this mode until bit 8 is cleared ‘0’ to enable Continuous Conversion mode, or until power is recycled.

The Shutdown bit (bit 8) cannot be set to ‘1’ while bits 6 and 7 of CONFIG (Lock bits) are set to ‘1’. However, it can be cleared ‘0’ or returned to Continuous Conversion while locked.

In Shutdown mode, all registers can be read or written. However, the serial bus activity increases the shutdown current.

If the device is shutdown while the Event pin is asserted, then the Event output will be deasserted during shutdown. It will remain deasserted until the device is enabled for normal operation. Once the device is enabled, it takes t_{CONV} before the device reasserts the Event output.

5.2.2 TEMPERATURE HYSTERESIS (T_{HYST})

A hysteresis of 0°C, 1.5°C, 3°C or 6°C can be selected for the T_{UPPER}, T_{LOWER} and T_{CRIT} temperature boundaries using bits 10 and 9 of CONFIG. The hysteresis applies for decreasing temperature only (hot to cold), or as temperature drifts below the specified limit.

The hysteresis bits can not be changed if either of the lock bits, bits 6 and 7 of CONFIG, are set to ‘1’.

The T_{UPPER}, T_{LOWER} and T_{CRIT} boundary conditions are described graphically in Figure 5-9.

5.2.3 EVENT OUTPUT CONFIGURATION

The Event output can be enabled using bit 3 of CONFIG (Event output control bit) and can be configured as either a comparator output or as Interrupt Output mode using bit 0 of CONFIG (Event mode). The polarity can also be specified as an active-high or active-low using bit 1 of CONFIG (Event polarity). The Event output requires a pull-up resistor to function.

These configurations are designed to serve processors with Low-to-High or High-to-Low edge triggered inputs. With Active-High configuration, when the Event output deasserts, power will be dissipated across the pull-up resistor.

When the ambient temperature increases above the critical temperature limit, the Event output is forced to a comparator output (regardless of bit 0 of CONFIG). When the temperature drifts below the critical temperature limit minus hysteresis, the Event output automatically returns to the state specified by bit 0 of CONFIG.

The status of the Event output can be read using bit 4 of CONFIG (Event status). This bit can not be set to ‘1’ in shutdown mode.

Bits 7 and 6 of the CONFIG register can be used to lock the T_{UPPER}, T_{LOWER} and T_{CRIT} registers. The bits prevent false triggers at the Event output due to an accidental rewrite to these registers.

The Event output can also be used as a critical temperature output using bit 2 of CONFIG (critical output only). When this feature is selected, the Event output becomes a comparator output. In this mode, the interrupt output configuration (bit 0 of CONFIG) is ignored.
5.2.3.1 Comparator Mode

Comparator mode is selected using bit 0 of CONFIG. In this mode, the Event output is asserted as active-high or active-low using bit 1 of CONFIG. Figure 5-9 shows the conditions that toggle the Event output.

If the device enters Shutdown mode with asserted Event output, the output will deassert. It will remain deasserted until the device enters Continuous Conversion mode and after the first temperature conversion is completed, tCONV. After the initial temperature conversion, TA must satisfy the TUPPER or TLOWER boundary conditions in order for Event output to be asserted.

Comparator mode is useful for thermostat-type applications, such as turning on a cooling fan or triggering a system shutdown when the temperature exceeds a safe operating range.

5.2.3.2 Interrupt Mode

In the Interrupt mode, the Event output is asserted as active-high or active-low (depending on the polarity configuration) when TA drifts above or below TUPPER and TLOWER limits. The output is deasserted by setting bit 5 (Interrupt Clear) of CONFIG. If the device enters Shutdown mode with asserted Event output, the output will deassert. It will remain deasserted until the device enters Continuous Conversion mode and after the first temperature conversion is completed, tCONV. If the interrupt clear bit (Bit 5) is never set, then the Event output will reassert after the first temperature conversion.

In addition, if TA ≥ TCRI the Event output is forced as Comparator mode and asserts until TA < TCRI - THYST. While the Event output is asserted, the user must send the Clear Interrupt command (bit 5 of CONFIG) for Event output to deassert, when temperature drops below the critical limit, TA < TCRI - THYST. Otherwise, Event output remains asserted (see Figure 5-9 for a graphical description). Switching from Interrupt mode to Comparator mode also deasserts Event output.

This mode is designed for interrupt-driven microcontroller-based systems. The microcontroller receiving the interrupt will have to acknowledge the interrupt by setting bit 5 of CONFIG register from the MCP98244.

5.2.4 TEMPERATURE RESOLUTION

The MCP98244 device is capable of providing temperature data with 0.5°C to 0.0625°C resolution. The Resolution can selected using the Resolution register (Register 5-8) which is located in address '00001001'b. This address location is not specified in JEDEC StandardJC42.4. However, it provides additional flexibility while being functionally compatible with JC42.4 and provides a 0.25°C resolution at 125 ms (max.). In order to prevent accidentally changing the resolution and exceeding the 125 ms conversion time, the device must be in Shutdown mode to change this register. The selected resolution can be read by user using bit 4 and bit 3 of the Capability register (Register 5-2). A 0.25°C resolution is set as POR default by factory.

<table>
<thead>
<tr>
<th>Resolution</th>
<th>tCONV (ms)</th>
<th>Samples/sec (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5°C</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>0.25°C</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>(Power-up default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125°C</td>
<td>130</td>
<td>8</td>
</tr>
<tr>
<td>0.0625°C</td>
<td>260</td>
<td>4</td>
</tr>
</tbody>
</table>
FIGURE 5-9: Event Output Condition.

TABLE 5-3: TEMPERATURE EVENT OUTPUT CONDITIONS

<table>
<thead>
<tr>
<th>Note</th>
<th>Output Boundary Conditions</th>
<th>Comparator</th>
<th>Interrupt</th>
<th>Critical</th>
<th>TA Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Output State (Active Low/High)</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>$T_A \leq T_{LOWER}$</td>
<td>High/Low</td>
<td>Low/High</td>
<td>High/Low</td>
<td>0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>$T_A < T_{LOWER} - T_{HYST}$</td>
<td>Low/High</td>
<td>Low/High</td>
<td>High/Low</td>
<td>0 0 1</td>
</tr>
<tr>
<td>3</td>
<td>$T_A \geq T_{UPPER}$</td>
<td>Low/High</td>
<td>Low/High</td>
<td>High/Low</td>
<td>0 1 0</td>
</tr>
<tr>
<td>4</td>
<td>$T_A \leq T_{UPPER} - T_{HYST}$</td>
<td>High/Low</td>
<td>Low/High</td>
<td>High/Low</td>
<td>0 0 0</td>
</tr>
<tr>
<td>5</td>
<td>$T_A \geq T_{CRIT}$</td>
<td>Low/High</td>
<td>Low/High</td>
<td>Low/High</td>
<td>1 1 0</td>
</tr>
<tr>
<td>6</td>
<td>When $T_A \geq T_{CRIT}$ the Event output is forced to Comparator Mode and bits 0 of CONFIG (Event output mode) is ignored until $T_A < T_{CRIT} - T_{HYST}$. In the Interrupt Mode, if Interrupt is not cleared (bits 5 of CONFIG) as shown in the diagram at Note 6, then Event will remain asserted at Note 7 until Interrupt is cleared by the controller.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$T_A < T_{CRIT} - T_{HYST}$</td>
<td>Low/High</td>
<td>High/Low</td>
<td>High/Low</td>
<td>0 1 0</td>
</tr>
</tbody>
</table>

Note:
- Comparator Interrupt Critical
- Output State (Active Low/High) 15 14 13
5.3 MCP98244 EEPROM FEATURE DESCRIPTION

5.3.1 BYTE WRITE

To write a byte in the MCP98244 EEPROM, the master has to specify the memory location or address. Once the address byte is transmitted correctly followed by a word address, the word address is stored in the EEPROM address pointer. The following byte is data to be stored in the specified memory location. Figure 5-10 shows the timing diagram.

FIGURE 5-10: Timing Diagram for Byte Write (See Section 4.0 “Serial Communication”).
5.3.2 PAGE WRITE

The write Address Byte, word address and the first data byte are transmitted to the MCP98244 in the same way as in a byte write. Instead of generating a Stop condition, the master transmits up to 15 additional data bytes to the MCP98244, which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a Stop condition. Upon receipt of each word, the four lower order address pointer bits are internally incremented by one. The higher order four bits of the word address remain constant. If the master should transmit more than 16 bytes prior to generating the Stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the Stop condition is received, an internal write cycle will begin (Figure 5-11).

Note: Page write operations are limited to writing bytes within a single physical page, regardless of the number of bytes actually being written. Physical page boundaries start at addresses that are integer multiples of the page buffer size (or ‘page size’) and end at addresses that are integer multiples of [page size - 1]. If a Page Write command attempts to write across a physical page boundary, the result is that the data wraps around to the beginning of the current page (overwriting data previously stored there), instead of being written to the next page, as might be expected. It is therefore necessary for the application software to prevent page write operations that would attempt to cross a page boundary.

FIGURE 5-11: Timing Diagram for Page Write (See Section 4.0 “Serial Communication”).
5.3.3 BANK OR PAGE SELECTION FOR EEPROM READ/WRITE OPERATION

There are two 256 byte banks or pages in this device (512 bytes total). The pages are selected using I²C Set Page Address (SPA) command byte of '0110 1100' for bank/page 0 and '0110 1110' for bank/page 1, see Table 5-5.

The current page status can be read using the Read Page Address (RPA) Command. If the device ACK or NAK the command, then the current page is 0 or 1, respectively.

TABLE 5-4: SELECTING 256 BYTE BANKS OR PAGES FOR EEPROM READ/WRITE

<table>
<thead>
<tr>
<th>EEPROM Function</th>
<th>Operation</th>
<th>Address Byte</th>
<th>Address Code</th>
<th>Slave Address 1</th>
<th>R/W</th>
<th>A0 PIN Voltage</th>
<th>MCP98244 output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Bank/Page Address 0 (SPA0)</td>
<td>WRITE</td>
<td>0110</td>
<td>1 1 0 0</td>
<td>VDD, VSS, VHV</td>
<td>ACK</td>
<td>Page 0 Set</td>
<td></td>
</tr>
<tr>
<td>Set Bank/Page Address 1 (SPA1)</td>
<td>WRITE</td>
<td>0110</td>
<td>1 1 1 0</td>
<td>VDD, VSS, VHV</td>
<td>ACK</td>
<td>Page 1 Set</td>
<td></td>
</tr>
<tr>
<td>Read Bank/Page Address (RPA)</td>
<td>READ</td>
<td>0110</td>
<td>1 1 0 0</td>
<td>VDD, VSS, VHV</td>
<td>ACK</td>
<td>Page 0</td>
<td>NAK for Page 1</td>
</tr>
</tbody>
</table>

Note 1: A0, A1, A2 address pin states are ignored.

FIGURE 5-12: Timing Diagram for Bank/Page Selection (See Section 4.0 “Serial Communication”)

© 2012-2013 Microchip Technology Inc. DS22327C-page 33
5.3.4 WRITE PROTECTION

The MCP98244 has a Software Write-Protect (SWP) feature that allows a 128-byte block to be write-protected. There are four 128-byte blocks. Each block is write protected individually. The write-protected area can be cleared by sending Clear Write Protect (CWP) commands for each block.

To access write protection, the device address code of the Address Byte is set to ‘0110’ instead of ‘1010’. In this mode, the Slave Address pins are ignored. Once the device is write protected it will not acknowledge any write commands to the protected block. Table 5-5 shows the corresponding Address Bytes for the write-protect feature.

5.3.4.1 SWP/RPS

The SWP (Software Write Protect) feature is invoked by writing a command byte as shown on Table 5-5. It can be cleared using the CWP command. In this mode, the Slave Address pins are ignored. A high voltage V_{HV} needs to be applied to the A0 pin. RPS (Read Protection Status) can be executed to read protection status.

5.3.4.2 CWP (Clear Write Protect)

The CWP feature is invoked by writing clear write-protect command. A high voltage V_{HV} needs to be applied to the A0 pin and once the command is executed bank/Page 0 and bank/Page 1 are cleared. Table 5-5 shows the bit configuration.

Table 5-5: DEVICE SLAVE ADDRESS DURING WRITE PROTECTION (SWP/CWP)

<table>
<thead>
<tr>
<th>EEPROM Function</th>
<th>Operation</th>
<th>Address Code 2</th>
<th>Slave Address 1-2</th>
<th>R/W</th>
<th>A0 PIN Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP0/RPS0 — Bank/Page 0, Block 0 00h to 7Fh</td>
<td>SWP0 → WRITE</td>
<td>0110 0 0 1 0</td>
<td>VHV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPS0 → READ 4</td>
<td></td>
<td>1 V_{DD}, V_{SS}, V_{HV}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP1/RPS1 — Bank/Page 0, Block 1 80h to FFh</td>
<td>SWP1 → WRITE</td>
<td>0110 1 0 0 0</td>
<td>VHV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPS1 → READ 4</td>
<td></td>
<td>1 V_{DD}, V_{SS}, V_{HV}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP2/RPS2 — Bank/Page 1, Block 2 00h to 7Fh</td>
<td>SWP2 → WRITE</td>
<td>0110 1 0 1 0</td>
<td>VHV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPS2 → READ 4</td>
<td></td>
<td>1 V_{DD}, V_{SS}, V_{HV}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWP3/RPS3 — Bank/Page 1, Block 3 80h to FFh</td>
<td>SWP3 → WRITE</td>
<td>0110 0 0 0 0</td>
<td>VHV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPS3 → READ 4</td>
<td></td>
<td>1 V_{DD}, V_{SS}, V_{HV}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWP (Clear all Pages)</td>
<td>WRITE</td>
<td>0110 0 1 1 0</td>
<td>VHV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The slave address bits for each block are not binary increments for compatibility.

2: For Address Code <0110> the A0, A1, A2 states are ignored.

3: All address bytes, other than those indicated below, are ignored by the device.

4: The device will NAK if protected and ACK if it is unprotected.

FIGURE 5-13: Timing Diagram for Setting Software Write Protect (See Section 4.0 “Serial Communication”).
TABLE 5-6: DEVICE RESPONSE WHEN WRITING DATA OR ACCESSING SWP_n/CWP/SPA_n 2

<table>
<thead>
<tr>
<th>Status</th>
<th>Command</th>
<th>ACK</th>
<th>Address</th>
<th>ACK</th>
<th>Data Byte</th>
<th>ACK</th>
<th>STOP Cmd 3</th>
<th>Write/Clear Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Protected</td>
<td>SWP<sub>n</sub>/CWP</td>
<td>ACK</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SWP<sub>n</sub>/CWP</td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SWP<sub>n</sub>/CWP</td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Page/byte write</td>
<td>ACK</td>
<td>Address</td>
<td>ACK</td>
<td>Data</td>
<td>ACK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protected</td>
<td>SWP<sub>n</sub></td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>CWP</td>
<td>ACK</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>CWP</td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Page/byte write</td>
<td>ACK</td>
<td>Address</td>
<td>ACK</td>
<td>Data</td>
<td>NAK</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Protected or Not protected</td>
<td>SPA<sub>0,1</sub></td>
<td>ACK</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes/No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>SPA<sub>0,1</sub></td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>—</td>
<td>—</td>
<td>Yes/No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>SPA<sub>0,1</sub></td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>0xFF</td>
<td>ACK</td>
<td>Yes/No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note 1: 0xFF is defined as ‘don’t care’ byte.

2: N or n = 1, 2, 3, and 4 which describes the EEPROM Block number as shown in Table 5-5.

3: I²C stop command is necessary to execute the instructions.

4: The device responds SPA_{0,1} Commands with ACK, therefore STOP command is not necessary.

TABLE 5-7: DEVICE RESPONSE WHEN RPA/RPS_n 11

<table>
<thead>
<tr>
<th>Status</th>
<th>Command</th>
<th>ACK</th>
<th>Address</th>
<th>ACK</th>
<th>Data Byte</th>
<th>ACK</th>
<th>STOP Cmd 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Protected</td>
<td>RPS<sub>n</sub></td>
<td>ACK</td>
<td>0xFF</td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Protected</td>
<td>RPS<sub>n</sub></td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Protected or Not protected</td>
<td>RPA<sub>0</sub></td>
<td>ACK</td>
<td>0xFF</td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>Yes/No</td>
</tr>
<tr>
<td></td>
<td>RPA<sub>1</sub></td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>0xFF</td>
<td>NAK</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>

Note 1: N or n = 1, 2, 3, and 4 which describes the EEPROM Block number as shown in Table 5-5.

2: Since the responses to these read commands are output on the 9th bit, STOP command is not necessary.
5.3.5 READ OPERATION

Read operations are initiated in the same way as write operations, with the exception that the R/W bit of the slave address is set to ‘1’. There are three basic types of read operations: current address read, random read and sequential read.

5.3.5.1 Current Address Read

The MCP98244 contains an address counter that maintains the address of the last word accessed, internally incremented by ‘1’. Therefore, if the previous access (either a read or write operation) was to address \(n \), the next current address read operation would access data from address \(n+1 \). Upon receipt of the slave address with R/W bit set to ‘1’, the MCP98244 issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge (NAK) the transfer but does generate a Stop condition and the MCP98244 discontinues transmission (Figure 5-14).

FIGURE 5-14: Reading Current Word Address (See Section 4.0 “Serial Communication”).

Note: In this example, the current word address is the previously accessed address location \(n \) plus 1.
5.3.5.2 Random Read

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is done by sending the word address to the MCP98244 as part of a write operation. Once the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. The master then issues the Address Byte again, but with the R/W bit set to a '1'. The MCP98244 then issues an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a stop condition and the MCP98244 discontinues transmission (Figure 5-15).

FIGURE 5-15: Timing Diagram for Random Read (See Section 4.0 “Serial Communication”).

Note: In this example, ‘n’ is the current Address Word which ‘00’ and the data is the byte at address ‘n’.
5.3.5.3 Sequential Read

Sequential reads are initiated in the same way as a random read, with the exception that after the MCP98244 transmits the first data byte, the master issues an acknowledge, as opposed to a stop condition in a random read. This directs the MCP98244 to transmit the next sequentially addressed 8-bit word (Figure 5-16).

To provide sequential reads, the MCP98244 contains an internal address pointer, which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.

5.3.6 STANDBY MODE

The design will incorporate a low-power Standby mode (\(I_{\text{SHDN}}\)). Standby mode will be entered after a normal termination of any operation and after all internal functions are complete. This would include any error conditions occurring, such as improper number of clock cycles or improper instruction byte as defined previously.

Note 1: ‘\(n\)’ is the initial address location and ‘\(m\)’ is the final address location (‘\(n+m\)’ < 256)

FIGURE 5-16: Timing Diagram for Sequential Read (See Section 4.0 “Serial Communication”).
5.4 Summary of Power-On Default

The MCP98244 has an internal Power-On Reset (POR) circuit. If the power supply voltage V_{DD} glitches down to the $V_{POR, TS}$ and $V_{POR, EE}$ thresholds, the device resets the registers to the power-on default settings.

Table 5-8 shows the power-on default summary for the temperature sensor. The EEPROM resets the address pointer to 0x00 hex.

TABLE 5-8: MCP98244 TEMPERATURE SENSOR POWER-ON RESET DEFAULTS

<table>
<thead>
<tr>
<th>Address (Hexadecimal)</th>
<th>Registers</th>
<th>Default Register Data (Hexadecimal)</th>
<th>Power-Up Default Register Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Capability</td>
<td>0x00EF</td>
<td>Event output deasserts in Shutdown I²C time out 25 ms to 35 ms Accepts V_{HV} at A0 pin 0.25°C Measurement Resolution Measures temperature below 0°C ±1°C accuracy over active range Temperature event output</td>
</tr>
<tr>
<td>0x01</td>
<td>CONFIG</td>
<td>0x0000</td>
<td>Comparator mode Active-Low output Event and critical output Output disabled Event not asserted Interrupt cleared Event limits unlocked Critical limit unlocked Continuous conversion 0°C Hysteresis</td>
</tr>
<tr>
<td>0x02</td>
<td>T_{UPPER}</td>
<td>0x0000</td>
<td>0°C</td>
</tr>
<tr>
<td>0x03</td>
<td>T_{LOWER}</td>
<td>0x0000</td>
<td>0°C</td>
</tr>
<tr>
<td>0x04</td>
<td>T_{CRIT}</td>
<td>0x0000</td>
<td>0°C</td>
</tr>
<tr>
<td>0x05</td>
<td>T_A</td>
<td>0x0000</td>
<td>0°C</td>
</tr>
<tr>
<td>0x06</td>
<td>Manufacturer ID</td>
<td>0x0054</td>
<td>—</td>
</tr>
<tr>
<td>0x07</td>
<td>TSE2004av</td>
<td>0x2201</td>
<td>—</td>
</tr>
<tr>
<td>0x08</td>
<td>Microchip</td>
<td>0x2201</td>
<td>—</td>
</tr>
<tr>
<td>0x09</td>
<td>Resolution</td>
<td>0x0001</td>
<td>0.25°C Measurement Resolution</td>
</tr>
</tbody>
</table>
6.0 APPLICATIONS INFORMATION

6.1 Layout Considerations

The MCP98244 device does not require any additional components besides the master controller in order to measure temperature. However, it is recommended that a decoupling capacitor of 0.1 µF to 1 µF be used between the VDD and GND pins. A high-frequency ceramic capacitor is recommended. It is necessary for the capacitor to be located as close as possible to the power and ground pins of the device in order to provide effective noise protection.

In addition, good PCB layout is key for better thermal conduction from the PCB temperature to the sensor die. For good temperature sensitivity, add a ground layer under the device pins as shown in Figure 6-1.

6.2 Thermal Considerations

A potential for self-heating errors can exist if the MCP98244 SDA, SCLK and Event lines are heavily loaded with pull-ups (high current). Typically, the self-heating error is negligible because of the relatively small current consumption of the MCP98244. A temperature accuracy error of approximately 0.5°C could result from self-heating if the communication pins sink/source the maximum current specified.

For example, if the Event output is loaded to maximum IOL, Equation 6-1 can be used to determine the effect of self-heating.

EQUATION 6-1: EFFECT OF SELF-HEATING

\[
T_A = \theta_J A V_{DD} I_{DD} + V_{OL,Event} I_{OL,Event} + V_{OL,SDA} I_{OL,SDA} \]

Where:

- \(T_A = T_J - T_A \)
- \(T_J = \) Junction Temperature
- \(T_A = \) Ambient Temperature
- \(\theta_JA = \) Package Thermal Resistance
- \(V_{OL,Event, SDA} = \) Event and SDA Output \(V_{OL} \) (0.4 \(V_{max} \))
- \(I_{OL,Event, SDA} = \) Event and SDA Output \(I_{OL} \) (3 mA\(_{max}\) and 20 mA\(_{max}\), respectively)

At room temperature (\(T_A = +25^\circ C \)) with maximum \(I_{DD} = 500 \mu A \) and \(V_{DD} = 3.6V \), the self-heating due to power dissipation \(T_A \) is 0.58°C for the TDFN-8 package.

FIGURE 6-1: DFN Package Layout.
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend:
- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code
- \(e^3 \) Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator \((e^3) \) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Contact Thickness</td>
<td>A3</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Exposed Pad Length</td>
<td>D2</td>
</tr>
<tr>
<td>Exposed Pad Width</td>
<td>E2</td>
</tr>
<tr>
<td>Contact Width</td>
<td>b</td>
</tr>
<tr>
<td>Contact Length</td>
<td>L</td>
</tr>
<tr>
<td>Contact-to-Exposed Pad</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package may have one or more exposed tie bars at ends.
3. Package is saw singulated
4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-129C Sheet 2 of 2
8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75 mm Body [TDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td></td>
<td>0.50 BSC</td>
<td></td>
</tr>
<tr>
<td>Optional Center Pad Width</td>
<td>W2</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>Optional Center Pad Length</td>
<td>T2</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C1</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2129A
APPENDIX A: REVISION HISTORY

Revision C (May 2013)

The following is the list of modifications:

1. Updated the operating voltage range from
 \(V_{\text{DD}} = 2.2\text{V to 3.6\text{V}} \) to \(V_{\text{DD}} = 1.7\text{V to 3.6\text{V}} \).
2. Updated the verbiage throughout the document relevant to the change in \(V_{\text{DD}} \) range.
3. Updated Figure 2-1 and Figure 2-4.
4. Incremented the silicon revision ID from 0x00 to 0x01.

Revision B (December 2012)

The following is the list of modification:

\[\begin{itemize}
\item Updated the temperature range in the Serial Interface Timing Specifications table.
\end{itemize} \]

Revision A (December 2012)

\[\begin{itemize}
\item Original Release of this Document.
\end{itemize} \]
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>:X</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

<table>
<thead>
<tr>
<th>Device:</th>
<th>MCP98244T: Temperature Sensor (Tape and Reel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range:</td>
<td>E = -40°C to +125°C (Extended)</td>
</tr>
<tr>
<td>Package:</td>
<td>MNY = Plastic Dual Flat, No Lead, (2x3 TDFN), 8-lead (TDFN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device:</th>
<th>MCP98244T-BE/MNY: Tape and Reel, Extended Temp., 8LD 2x3 TDFN package</th>
</tr>
</thead>
</table>
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoQ, KEELoQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rFLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2012-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-62077-220-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5000
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7628
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/29/12